The Vaccine, 

the vaccine, 

made by Pfizer Inc and BioNTech SE, and that the National Health Service had been told to be ready to administer it by Dec. 1.

More Posts from Thehkr and Others

2 years ago

Meet Our Superhero Space Telescopes!

While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.

A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech

To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.

In a cartoon of space, shown as black and gray, space telescopes rise out of the darkness one by one. One by one, their names are revealed: Hubble, Chandra, Spitzer, Kepler, and TESS.

Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.

An animated cartoon shows our Superhero space telescopes circling a crowd of multicolored exoplanets. Each of their observation beams is shown lighting up one by one in beautiful colors as they observe planets in the group.

Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.

Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.

A cartoon exoplanet is shown as big and bright blue. It is with three space telescopes that studied it: Spitzer, Hubble, and Chandra. Exclamation marks light up as it reveals what each telescope found. Spitzer: 1,700 degrees F (933 degrees C) and 5,400 miles per hour winds (and 8,300 kph wind). Hubble: Blue clouds, raining glass. Chandra: evaporating atmosphere.

Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.

A cartoon animation shows the five Superhero space telescopes circling slowly in the dark of space. Slowly, a new Superhero lowers into the middle of the circle. It is labeled James Webb, and as it lowers, streams of light shoot out. The space background goes from black and grays to streams of beautiful colors.

Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.

A cartoon animation pans across exoplanet after exoplanet as the cosmos is revealed in multitudes of colors and light. Some planets are spinning quickly, others are moving more slowly. Each one is a different color and size.

Make sure to follow us on Tumblr for your regular dose of space!

3 years ago
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈
武田玲奈

武田玲奈

tumbex

6 years ago

NASA Tech Launching on the Falcon Heavy

Later this month, a SpaceX Falcon Heavy rocket will take to the skies for the third time to launch the Department of Defense’s Space Test Program-2 (STP-2) mission. Several exciting, one-of-a-kind NASA technology and science payloads are among the two-dozen spacecraft aboard.

image

First, let’s talk about that Falcon Heavy rocket. Its 27 engines generate thrust at liftoff equal to that of approximately 18 airplanes, and it can lift over 140,000 pounds.

image

Managed by the U.S. Air Force Space and Missile Systems Center, STP-2 is the first government-contracted Falcon Heavy launch. It will reuse the two side boosters recovered after the April flight. SpaceX describes it as one of the most challenging launches in the company’s history.

It’s a big deal to us at NASA because we’re launching some pretty cool technologies. The tech will support our future exploration plans by helping improve future spacecraft design and performance. Here’s a bit about each:

Deep Space Atomic Clock

Time is the heartbeat of space navigation. Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.

Our Jet Propulsion Laboratory has been perfecting an atomic clock fit for exploration missions. The Deep Space Atomic Clock is the first atomic clock designed to fly on a spacecraft destined for beyond Earth’s orbit. The timepiece is lighter and smaller—no larger than a toaster oven—than its refrigerator-sized, Earthly counterparts.

image

This miniaturized clock could enable one-way navigation: a spacecraft receives a signal from Earth and can determine its location immediately using its own, built-in navigation system. Even smaller versions of the clock are being investigated right now that could be used for the growing number of small to mid-size satellites. As we go forward to the Moon with the Artemis program, precise measurements of time are key to mission success.

image

The Deep Space Atomic Clock is the primary payload onboard the General Atomics Electromagnetic Systems Orbital Test Bed satellite and will perform a year-long demonstration in space.

Enhanced Tandem Beacon Experiment (E-TBEx)

Two tiny satellites will study how signals can be muddled as they travel through hard-to-predict bubbles in the upper atmosphere. Signals sent from satellites down to Earth (and vice versa) can be disrupted by structured bubbles that sometimes form in Earth’s upper atmosphere. Because this region is affected both by weather on Earth and conditions in space, it’s hard to predict just when these bubbles will form or how they’ll mess with signals.

image

The E-TBEx CubeSats (short for Enhanced Tandem Beacon Experiment) will try to shed some light on that question. As these little satellites fly around Earth, they’ll send radio signals (like the ones used by GPS) to receiving stations on the ground. Scientists will be able to look at the signals received and see if they were jumbled as they traveled through the upper atmosphere down to Earth — which will help us track when these bubbles are forming and how much they’re interfering with our signals.

Green Propellant Infusion Mission (GPIM)

For decades, we have relied on a highly toxic spacecraft fuel called hydrazine. The Green Propellant Infusion Mission (GPIM) will lay the foundation to replace conventional chemical propulsion systems with a safer and more efficient alternative for next-generation spacecraft.

GPIM will demonstrate a new propellant in space for the first time. Concocted by the U.S. Air Force Research Laboratory, this innovative, “green” fuel—which actually has more of a peach hue—is expected to improve overall spacecraft performance due to its higher density, increased thrust and lower freezing point in comparison with hydrazine.

image

GPIM’s propulsion system, developed by Aerojet Rocketdyne, consists of new compatible tanks, valves and thrusters. During the two-month-long demonstration on a Ball Aerospace spacecraft, engineers will conduct orbital maneuvers to demonstrate the performance of the propellant and propulsion system.

image

Space Environment Testbeds (SET)

It’s not easy being a spacecraft; invisible, energetic particles zip throughout space — and while there are so few that space is considered a vacuum, what’s there still packs a punch. Tiny particles — like those seen here impacting a detector on a Sun-studying spacecraft — can wreak havoc with the electronics we send up into space.

image

Space Environment Testbeds — or SET, for short — is a mission to study space radiation and how it affects spacecraft and electronics in orbit. What looks like snow flurries in these animated images, for example, is actually a solar radiation storm of incredibly fast particles, unleashed by a solar eruption. Energetic particles from the Sun or deep space can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware.

By studying radiation effects and different methods to protect satellites, SET will help future missions improve spacecraft design, engineering and operations.

Follow @NASA_Technology and @NASASun on Twitter for news about the STP-2 launch and our missions aboard.

Check out www.nasa.gov/spacex to stay up-to-date on the launch day and time. Don’t forget to tune into our launch coverage, scheduled to start about 30 minutes before liftoff!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

4 years ago
thehkr - 無標題
5 years ago

10 Ways the 2010s Pushed Communication and Navigation into the Future!

We transmit vast amounts of data from space, letting all of our satellites “phone home.” Imagery from far off regions of our solar system, beautiful visions of other galaxies and insights into planet Earth flow through our communications networks. 

Our Space Communications and Navigation (SCaN) program is dedicated to making sure we precisely track, command and control our spacecraft. All the while, they develop bold new technologies and capabilities for Artemis – our sustainable lunar exploration program that will place the first woman and the next man on the Moon in 2024. 

As we prepare to say goodbye to the 2010s, let’s take a look at 10 of the biggest milestones in space communications and navigation of the past decade. 

1. Continuous global communications? TDRS has you covered.

image

From 2013 to 2017, we launched three Tracking and Data Relay Satellites, or TDRS for short. These new satellites replenished a fleet that has been around since the early 1980s, allowing us to provide continuous global communications coverage into the next decade. Missions like the International Space Station depend on TDRS for 24/7 coverage, allowing our astronauts to call home day or night.

2. Binge watching on the Moon? Laser communications will make it possible.

image

Imagine living at the Moon. With the Artemis program, we’re making it happen! However, we can’t live there without decent internet, right? In 2013, we conducted the Lunar Laser Communication Demonstration (LLCD). This was the first high-speed laser communications demonstration from the Moon, transmitting data at a whopping 622 megabits per second, which is comparable to many high-speed fiber-optic connections enjoyed at home on Earth! Our LLCD sent back high-definition video with no buffering. 

3. Record Breaking GPS navigation, at your service.

Space communications is just one piece of the SCaN puzzle. We do navigation too! We even break records for it. In 2016, our Magnetospheric Multiscale (MMS) mission broke the world record for highest altitude GPS fix at 43,500 miles above Earth. In 2017, they broke it again at 93,200 miles. Earlier this year, they broke it a third time at 116,200 miles from Earth — about halfway to the Moon!

Thanks to MMS, our navigation engineers believe that GPS and similar navigation constellations could play a significant role in the navigation architecture of our planned Gateway spaceship in lunar orbit!

4. Crashing planes as part of the game – of research!  

image

Then there was that one summer we crashed three planes in the name of research! In 2015, our Search and Rescue office tested crash scenarios at Langley Research Center’s Landing and Impact Research Facility to improve the reliability of emergency beacons installed in planes. After the study, we made recommendations on how pilots should install these life-saving beacons, increasing their chances of survival in the event of a crash. The Federal Aviation Administration adopted these recommendations this year!

5. The Deep Space Atomic Clock takes flight. 

image

Missions venturing into deep space want the autonomy to make decisions without waiting for a commands from Earth. That’s why we launched the Deep Space Atomic Clock this past year. This itty-bitty technology demonstration is a small, ultra-stable timekeeping device that could enable autonomous navigation!

6. 50 never looked so good – for our Deep Space Network. 

image

In 2013, our Deep Space Network celebrated its 50th birthday! This is the network that transmitted Neil Armstrong’s famous words, “That’s one small step for (a) man, one giant leap for mankind.” Some of its more recent accomplishments? Gathering the last bits of data before Cassini dove into Saturn’s upper atmosphere, pulling down the “heart” of Pluto and talking to the Voyager probes as they journeyed into interstellar space!

7. SCaN Testbed becomes an official Hall of Famer. 

image

In 2012, we installed the SCaN Testbed, which looks like a blue box in the above picture, on the space station! We built the testbed out of Software Defined Radios, which can change their functionality and employ artificial intelligence. These radios will help us adapt to the increasingly crowded communications landscape and improve the efficiency of radio technology. The Testbed was so ground-breaking that it was inducted into the Space Technology Hall of Fame in 2019.

8. Moon mission communications system, secured! 

image

Just a few weeks ago, we held a ribbon-cutting for the Near Earth Network’s Launch Communications Segment, which will support Artemis missions as they rocket toward the Moon! During initial, dynamic phases of launch, the segment’s three stations will provide communications between astronauts and mission controllers, giving them the data necessary to ensure crew safety. 

9. Deep Space Station antenna introduces “beam waveguide” technology. 

image

On October 1, 2014, in Canberra, Australia, the Deep Space Network’s Deep Space Station 35 (DSS-35) antenna went operational. It was the first of a number of new antennas built to support the growing number of deep space missions! The antenna is different from other antennas that were built before it. Older antennas had a lot of their equipment stored high up on the antenna above the dish. DSS-35 uses “beam waveguide” technology that stores that equipment underground. This makes the weight sitting on the dish much lighter, cuts down on interference and makes the antenna much easier to operate and maintain.

10. Hello, Alaska! 

image

Last — but certainly not least — we expanded our presence in the 49th state, Alaska! While this picture might look like antennas rising from the forests of  Endor, the one in the foreground is actually an antenna we installed in 2014 in partnership with the University of Alaska Fairbanks. Because of its proximity to the polar north, this 11-meter beauty is uniquely situated to pull down valuable Earth science data from our polar-orbiting spacecraft, contributing to scientists’ understanding of our changing planet!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago
thehkr - 無標題
4 years ago

Top 10 Things to Know for the Return of our Launch America Mission With SpaceX

image

History was made May 30 when NASA astronauts Robert Behnken and Douglas Hurley launched from American soil in a commercially built and operated American crew spacecraft on its way to the International Space Station. 

Pictured above is the SpaceX Dragon Endeavour spacecraft that lifted off on the company’s Falcon 9 rocket from Launch Complex 39A at Kennedy Space Center in Florida and docked with the space station on May 31. Now, Behnken and Hurley are ready to return home in Endeavour for a splashdown off the coast of Florida, closing out a mission designed to test SpaceX’s human spaceflight system, including launch, docking, splashdown, and recovery operations. Undocking is targeted for 7:34 p.m. ET on August 1, with splashdown back to Earth slated for 2:42 p.m. on August 2. Watch our continuous live coverage HERE. 

1. Where will Behnken and Hurley splash down?

image

Image: SpaceX’s Crew Dragon is guided by four parachutes as it splashes down in the Atlantic on March 8, 2019, after the uncrewed spacecraft’s return from the International Space Station on the Demo-1 mission.

Together with SpaceX, we are capable of supporting seven splashdown sites off the coast of Florida. The seven potential splashdown sites for the Dragon Endeavor are off the coasts of Pensacola, Tampa, Tallahassee, Panama City, Cape Canaveral, Daytona, and Jacksonville.

2. How will a splashdown location be chosen?

Splashdown locations are selected using defined priorities, starting with selecting a station departure date and time with the maximum number of return opportunities in geographically diverse locations to protect for weather changes. Teams also prioritize locations which require the shortest amount of time between undocking and splashdown based on orbital mechanics, and splashdown opportunities that occur in daylight hours.

Check out the Departure and Splashdown Criteria Fact Sheet for an in-depth look at selecting return locations, decision points during return, and detailed weather criteria.

3. How long will it take for Behnken and Hurley to return to Earth?

image

Return time for Behnken and Hurley will vary depending on the undock and splashdown opportunities chosen, with the primary opportunity taking between six and 30 hours.

4. What does the return look like? What are the major milestones?

image

Crew Dragon’s return home will start with undocking from the International Space Station. At the time of undock, Dragon Endeavour and its trunk weigh approximately 27,600 pounds. We will provide live coverage of the return from undocking all the way through splashdown.

There will be two very small engine burns immediately after hooks holding Crew Dragon in place retract to actually separate the spacecraft from the station. Once flying free, Dragon Endeavour will autonomously execute four departure burns to move the spaceship away from the space station and begin the flight home. Several hours later, one departure phasing burn, lasting about six minutes, puts Crew Dragon on the proper orbital path to line it up with the splashdown zone.

Shortly before the final deorbit burn, Crew Dragon will separate from its trunk, which will burn up in Earth’s atmosphere. The spacecraft then executes the deorbit burn, which commits Crew Dragon to return and places it on an orbit with the proper trajectory for splashdown. After trunk separation and the deorbit burn are complete, the Crew Dragon capsule weighs approximately 21,200 pounds.  

5. How fast will Dragon Endeavour be going when it re-enters the Earth’s atmosphere? How hot will it get?

Crew Dragon will be traveling at orbital velocity prior to re-entry, moving at approximately 17,500 miles per hour. The maximum temperature it will experience on re-entry is approximately 3,500 degrees Fahrenheit. The re-entry creates a communications blackout between the spacecraft and Earth that is expected to last approximately six minutes.

6. When do the parachutes deploy?

image

Image: SpaceX’s final test of Crew Dragon’s Mark 3 parachute system on Friday, May 1, 2020, that will be used during the Demo-2 splashdwon mission. 

Dragon Endeavour has two sets of parachutes will that deploy once back inside Earth’s atmosphere to slow down prior to splashdown. Two drogue parachutes will deploy at about 18,000 feet in altitude while Crew Dragon is moving approximately 350 miles per hour. Four main parachutes will deploy at about 6,000 feet in altitude while Crew Dragon is moving approximately 119 miles per hour.

7. Who recovers the crew and the Dragon Endeavour capsule from the water? What vehicles and personnel are involved?

image

Image: SpaceX’s Crew Dragon is loaded onto the company’s recovery ship, Go Searcher, in the Atlantic Ocean, about 200 miles off Florida’s east coast, on March 8, after returning from the International Space Station on the Demo-1 mission.Credits: SpaceX

For splashdown at any of the seven potential sites, SpaceX personnel will be on location to recover the capsule from the water. Two recovery ships, the Go Searcher and the Go Navigator, split locations between the Gulf of Mexico and the Atlantic Ocean off the coast of Florida. On either ship will be more than 40 personnel from SpaceX and NASA, made up of spacecraft engineers, trained water recovery experts, medical professionals, the ship’s crew, NASA cargo experts, and others to assist in the recovery.

8. How long after splashdown until Behnken and Hurley are out of the capsule?

image

Image: NASA astronaut Doug Hurley, along with teams from NASA and SpaceX, rehearse crew extraction from SpaceX’s Crew Dragon, on August 13, 2019. Credits: NASA/Bill Ingalls

Immediately after splashdown has occurred, two fast boats with SpaceX personnel deploy from the main recovery ship. The first boat checks capsule integrity and tests the area around the Crew Dragon for the presence of any hypergolic propellant vapors. Once cleared, the personnel on the boats begin preparing the spaceship for recovery by the ship. The second fast boat is responsible for safing and recovering Crew Dragon’s parachutes, which have at this point detached from the capsule and are in the water.

At this point the main recovery vessel can move in and begin to hoist the Crew Dragon capsule onto the main deck. Once the capsule is on the recovery vessel, it is moved to a stable location for the hatch to be opened for waiting medical professionals to conduct initial checks and assist Behnken and Hurley out of Dragon Endeavour.

This entire process is expected to take approximately 45 to 60 minutes, depending on spacecraft and sea state conditions.

9. Where do Behnken and Hurley go after they are out of the capsule?

Immediately after exiting the Crew Dragon capsule, Behnken and Hurley will be assisted into a medical area on the recovery ship for initial assessment. This is similar to procedures when welcoming long-duration crew members returning home on Soyuz in Kazakhstan.

After initial medical checks, Behnken and Hurley will be returned to shore either by traveling on the primary recovery ship or by helicopter. Helicopter returns from the recovery ship are the baseline for all splashdown zones except for the Cape Canaveral splashdown site, with travel times ranging from approximately 10 minutes to 80 minutes. The distance from shore will be variable depending on the splashdown location, ranging from approximately 22 nautical miles to 175 nautical miles.

Once returned to shore, both crew members will immediately board a waiting NASA plane to fly back to Ellington field in Houston.

10. What happens next?

image

Image: NASA astronauts Shannon Walker, Victor Glover Jr. and Mike Hopkins and Japan’s Soichi Noguchi train in a SpaceX Crew Dragon capsule. Credit: SpaceX

Meanwhile, Dragon Endeavour will be returned back to the SpaceX Dragon Lair in Florida for inspection and processing. Teams will examine the data and performance of the spacecraft throughout the test flight to complete the certification of the system to fly operational missions for our Commercial Crew and International Space Station Programs. The certification process is expected to take about six weeks. Following successful certification, the first operational mission will launch with Crew Dragon commander Michael Hopkins, pilot Victor Glover, and mission specialist Shannon Walker – all of NASA – along with Japan Aerospace Exploration Agency (JAXA) mission specialist Soichi Noguchi will launch on the Crew-1 mission from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The four crew members will spend six months on the space station.

The launch is targeted for no earlier than late-September.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

4 years ago
No Matter What Happens In Life, Be Good To People. 

No matter what happens in life, be good to people. 

Being good to people is a wonderful legacy to leave behind.

[ Taylor Swift ]

5 years ago
thehkr - 無標題
4 years ago

What Would NASA Imagery Experts Pack for the Moon?

image

We are one step closer to landing the first woman and the next man on the Moon, and we want to know: What would you take with you to the Moon? 🌙

We are getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for the Artemis I mission. This test will ensure the Space Launch System — the most powerful rocket ever built — is ready for the first and future missions beyond Earth’s orbit to the Moon.  

In celebration of this important milestone, we’ve been asking you — yes, you! — to tell us what you would pack for the Moon with the hashtag #NASAMoonKit!

To provide a little inspiration, here are some examples of what NASA imagery experts would put in their Moon kits:

image

“The first thing that went into my #NASAMoonKit was my camera. Some of the most iconic photographs ever taken were captured on the surface of the Moon by NASA astronauts. The camera has to go. The hat and sunscreen will be a must to protect me from the unfiltered sunlight. Warm socks? Of course, my feet are always cold. A little “Moon Music” and a photo of Holly, the best dog in the world, will pass the time during breaks.  Lastly, I need to eat. Water and gummy peach rings will go in a small corner of my pack.”

— Marv Smith, Lead Photographer, NASA Glenn Research Center 

image

“I may not always pack light, but I tried to only pack the essentials — with a couple of goodies. I get cold fairly easily hence the blanket, extra NASA shirt, hat and gloves. No trip is complete without my favorite snack of almonds, water, sunglasses, lip balm, phone, and my headphones to listen to some music. I figured I could bring my yoga mat, because who wouldn’t want to do yoga on the Moon? The most important part of this kit is my camera! I brought a couple of different lenses for a variety of options, along with a sports action camera, notebook and computer for editing. The Van Gogh doll was just for fun!”

— Jordan Salkin, Scientific Imaging, NASA Glenn Research Center

image

“The first thing I thought of for my #NASAMoonKit was the first book I ever read when I was learning to read. It is about going on a journey to the Moon. I really liked that book and read it many times, looking at the illustrations and wondering about if I would ever actually go to the Moon. Of the many belongings that I have lost through the years from moving, that book has stayed with me and so it would, of course, go to the Moon with me. A family photo was second to get packed since we always had photos taken and volumes of old family photos in the house. Photography has played an important role in my life so my camera gear is third to get packed. As a kid I spent a lot of time and money building rockets and flying them. I bet my rocket would go very high on the Moon. I also like a little candy wherever I go.”  

— Quentin Schwinn, Scientific Imaging, NASA Glenn Research Center

image

“I couldn’t go to the moon without my two mirrorless digital SLR cameras, lenses, my 120 6x4.5 film camera, several rolls of 120 film, my singing bowl (for meditation), my wireless printer, my son’s astronaut toy, several pictures of both my sons and wife, my oldest son’s first shoes (they are good luck), cell phone (for music and extra photos), tablet and pen (for editing and books), my laptop, and my water bottle (I take it everywhere).”

— Jef Janis, Photographer, NASA Glenn Research Center  

image

“I’m taking my NASA coffee mug because let’s be honest; nothing is getting done on the moon until I’ve had my morning coffee out of my favorite mug. I’m taking two cameras: the 360-degree camera and the vintage range finder camera my father bought during the Korean War when he was a Captain and Base Doctor in the Air Force. I’m also taking my awesome camera socks so I can be a fashion embarrassment to my family in space as well as on Earth. The lucky rabbit is named Dez — for years I have carried her all over the world in my pocket whenever I needed a little good luck on a photo shoot. She’s come along to photograph hurricanes, presidents, and sports championships. Being from New Orleans, I would love to be the first to carry out a Mardi Gras tradition on the moon, flinging doubloons and beads to my fellow astronauts (especially if we are up there during Carnival season). I also want to take a picture of this picture on the moon so my wife and son know they are with me no matter where I go. Lastly, it’s a well-known fact that space travelers should always bring a towel on their journey.”

— Michael DeMocker, photographer, videographer & UAS, Michoud Assembly Facility

image

“I couldn’t go to the Moon without my camera, a 45-rpm vinyl record (My husband’s band — I really want to know how a record sounds in space. Gravity is what makes the needle lay on the record so will the change in gravity make it sound different?), a book to read, a photograph of my daughter, my phone or rather my communication and photo editing device, a snack, and I definitely couldn’t go to the Moon without my moon boots!”

— Bridget Caswell, Photographer, NASA Glenn Research Center  

thehkr - 無標題
無標題

122 posts

Explore Tumblr Blog
Search Through Tumblr Tags