Meet Our Superhero Space Telescopes!

Meet Our Superhero Space Telescopes!

While the first exoplanets—planets beyond our solar system—were discovered using ground-based telescopes, the view was blurry at best. Clouds, moisture, and jittering air molecules all got in the way, limiting what we could learn about these distant worlds.

A superhero team of space telescopes has been working tirelessly to discover exoplanets and unveil their secrets. Now, a new superhero has joined the team—the James Webb Space Telescope. What will it find? Credit: NASA/JPL-Caltech

To capture finer details—detecting atmospheres on small, rocky planets like Earth, for instance, to seek potential signs of habitability—astronomers knew they needed what we might call “superhero” space telescopes, each with its own special power to explore our universe. Over the past few decades, a team of now-legendary space telescopes answered the call: Hubble, Chandra, Spitzer, Kepler, and TESS.

In a cartoon of space, shown as black and gray, space telescopes rise out of the darkness one by one. One by one, their names are revealed: Hubble, Chandra, Spitzer, Kepler, and TESS.

Much like scientists, space telescopes don't work alone. Hubble observes in visible light—with some special features (superpowers?)—Chandra has X-ray vision, and TESS discovers planets by looking for tiny dips in the brightness of stars.

An animated cartoon shows our Superhero space telescopes circling a crowd of multicolored exoplanets. Each of their observation beams is shown lighting up one by one in beautiful colors as they observe planets in the group.

Kepler and Spitzer are now retired, but we're still making discoveries in the space telescopes' data. Legends! All were used to tell us more about exoplanets. Spitzer saw beyond visible light into the infrared and was able to make exoplanet weather maps! Kepler discovered more than 3,000 exoplanets.

Three space telescopes studied one fascinating planet and told us different things. Hubble found that the atmosphere of HD 189733 b is a deep blue. Spitzer estimated its temperature at 1,700 degrees Fahrenheit (935 degrees Celsius). Chandra, measuring the planet’s transit using X-rays from its star, showed that the gas giant’s atmosphere is distended by evaporation.

A cartoon exoplanet is shown as big and bright blue. It is with three space telescopes that studied it: Spitzer, Hubble, and Chandra. Exclamation marks light up as it reveals what each telescope found. Spitzer: 1,700 degrees F (933 degrees C) and 5,400 miles per hour winds (and 8,300 kph wind). Hubble: Blue clouds, raining glass. Chandra: evaporating atmosphere.

Adding the James Webb Space Telescope to the superhero team will make our science stronger. Its infrared views in increased ranges will make the previously unseen visible.

A cartoon animation shows the five Superhero space telescopes circling slowly in the dark of space. Slowly, a new Superhero lowers into the middle of the circle. It is labeled James Webb, and as it lowers, streams of light shoot out. The space background goes from black and grays to streams of beautiful colors.

Soon, Webb will usher in a new era in understanding exoplanets. What will Webb discover when it studies HD 189733 b? We can’t wait to find out! Super, indeed.

A cartoon animation pans across exoplanet after exoplanet as the cosmos is revealed in multitudes of colors and light. Some planets are spinning quickly, others are moving more slowly. Each one is a different color and size.

Make sure to follow us on Tumblr for your regular dose of space!

More Posts from Thehkr and Others

6 years ago
Time To Get Away… With Her…

Time to get away… with her…

5 years ago
thehkr - 無標題
5 years ago
thehkr - 無標題
thehkr - 無標題
thehkr - 無標題
thehkr - 無標題
5 years ago

The Rover Doctor is in: The Anatomy of a NASA Human Exploration Rover Challenge Rover

Exploration and inspiration collide head-on in our Human Exploration Rover Challenge held near Marshall Space Flight Center in Huntsville, Alabama, each April. The annual competition challenges student teams from around the world to design, build and drive a human-powered rover over a punishing half-mile course with tasks and obstacles similar to what our astronauts will likely have on missions to the Moon, Mars and beyond.

image

The anatomy of the rover is crucial to success. Take a look at a few of the vital systems your rover will need to survive the challenge!

The Chassis

image

A rover’s chassis is its skeleton and serves as the framework that all of the other rover systems attach to. The design of that skeleton incorporates many factors: How will your steering and braking work? Will your drivers sit beside each other, front-to-back or will they be offset? How high should they sit? How many wheels will your rover have? All of those decisions dictate the design of your rover’s chassis.

Wheels

image

Speaking of wheels, what will yours look like? The Rover Challenge course features slick surfaces, soft dunes, rocky craters and steep hills – meaning your custom-designed wheels must be capable of handling diverse landscapes, just as they would on the Moon and Mars. Carefully cut wood and cardboard, hammer-formed metal and even 3-D printed polymers have all traversed the course in past competitions.

Drivetrain

image

You’ve got your chassis design. Your wheels are good to go. Now you have to have a system to transfer the energy from your drivers to the wheels – the drivetrain. A good drivetrain will help ensure your rover crosses the finish line under the 8-minute time limit. Teams are encouraged to innovate and think outside the traditional bike chain-based systems that are often used and often fail. Exploration of the Moon and Mars will require new, robust designs to explore their surfaces. New ratchet systems and geared drivetrains explored the Rover Challenge course in 2019.

Colors and Gear

image

Every good rover needs a cool look. Whether you paint it your school colors, fly your country’s flag or decorate it to support those fighting cancer (Lima High School, above, was inspired by those fighting cancer), your rover and your uniform help tell your story to all those watching and cheering you on. Have fun with it!

image

Are you ready to conquer the Rover Challenge course? Join us in Huntsville this spring! Rover Challenge registration is open until January 16, 2020 for teams based in the United States.

If building rovers isn’t your space jam, we have other Artemis Challenges that allow you to be a part of the NASA team – check them out here.

image

Want to learn about our Artemis program that will land the first woman and next man on the Moon by 2024? Go here to read about how NASA, academia and industry and international partners will use innovative technologies to explore more of the lunar surface than ever before. Through collaborations with our commercial, international and academic partners, we will establish sustainable lunar exploration by 2028, using what we learn to take astronauts to Mars. 

The students competing in our Human Exploration Rover Challenge are paramount to that exploration and will play a vital role in helping NASA and all of humanity explore space like we’ve never done before!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

4 years ago

Setting the Standards for Unmanned Aircraft

From advanced wing designs, through the hypersonic frontier, and onward into the era of composite structures, electronic flight controls, and energy efficient flight, our engineers and researchers have led the way in virtually every aeronautic development. And since 2011, aeronautical innovators from around the country have been working on our Unmanned Aircraft Systems integration in the National Airspace System, or UAS in the NAS, project.  

image

This project was a new type of undertaking that worked to identify, develop, and test the technologies and procedures that will make it possible for unmanned aircraft systems to have routine access to airspace occupied by human piloted aircraft. Since the start, the goal of this unified team was to provide vital research findings through simulations and flight tests to support the development and validation of detect and avoid and command and control technologies necessary for integrating UAS into the NAS.  

image

That interest moved into full-scale testing and evaluation to determine how to best integrate unmanned vehicles into the national airspace and how to come up with standards moving forward. Normally, 44,000 flights safely take off and land here in the U.S., totaling more than 16 million flights per year. With the inclusion of millions of new types of unmanned aircraft, this integration needs to be seamless in order to keep the flying public safe.

image

Working hand-in-hand, teams collaborated to better understand how these UAS’s would travel in the national airspace by using NASA-developed software in combination with flight tests. Much of this work is centered squarely on technology called detect and avoid.  One of the primary safety concerns with these new systems is the inability of remote operators to see and avoid other aircraft.  Because unmanned aircraft literally do not have a pilot on board, we have developed concepts allowing safe operation within the national airspace.  

image

In order to better understand how all the systems work together, our team flew a series of tests to gather data to inform the development of minimum operational performance standards for detect and avoid alerting guidance. Over the course of this testing, we gathered an enormous amount of data allowing safe integration for unmanned aircraft into the national airspace. As unmanned aircraft are becoming more ubiquitous in our world - safety, reliability, and proven research must coexist.

image

Every day new use case scenarios and research opportunities arise based around the hard work accomplished by this incredible workforce. Only time will tell how these new technologies and innovations will shape our world.

image

Want to learn the many ways that NASA is with you when you fly? Visit nasa.gov/aeronautics.



Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago
Nintendo Switch Lite ザシアン・ザマゼンタ

Nintendo Switch Lite ザシアン・ザマゼンタ

3 years ago
Dark Energy

Dark Energy

This bone-chilling force will leave you shivering alone in terror! An unseen power is prowling throughout the cosmos, driving the universe to expand at a quickening rate. This relentless pressure, called dark energy, is nothing like dark matter, that mysterious material revealed only by its gravitational pull. Dark energy offers a bigger fright: pushing galaxies farther apart over trillions of years, leaving the universe to an inescapable, freezing death in the pitch black expanse of outer space. Download this free poster in English and Spanish and check out the full Galaxy of Horrors.

Make sure to follow us on Tumblr for your regular dose of space!

5 years ago
Ricardo Rodriguez - Waveloop

Ricardo Rodriguez - Waveloop

4 years ago

We Just Found Water on the Moon’s Sunlit Surface

image

When the first Apollo astronauts returned from the Moon in 1969, the Moon’s surface was thought to be completely dry. Over the last 20 years, orbital and impactor missions confirmed water ice is present inside dark, permanently shadowed craters around the poles. But could water survive in the Moon’s sunnier regions? Using SOFIA, the world’s largest flying observatory, we found water on a sunlit lunar surface for the first time. The discovery suggests water may be distributed across the Moon’s surface, which is a whopping 14.6 million square miles. Scientists think the water could be stored inside glass beadlike structures within the soil that can be smaller than the tip of a pencil. The amount of water detected is equivalent to about a 12-ounce bottle trapped in a cubic meter volume of soil. While that amount is 100 times less than what’s found in the Sahara Desert, discovering even small amounts raises new questions about how this precious resource is created and persists on the harsh, airless lunar surface. Learn more about the discovery: 

Water was found in Clavius Crater, one of the Moon’s largest craters visible from Earth.

image

The water may be delivered by tiny meteorite impacts… 

image

…or formed by the interaction of energetic particles ejected from the Sun. 

image

Follow-up observations by SOFIA will look for water in additional sunlit locations on the Moon.

image

We are eager to learn all we can about the presence of water in advance of sending the first woman and next man to the lunar surface in 2024 under our Artemis program. What we learn on and around the Moon will help us take the next giant leap – sending astronauts to Mars.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago
久松郁実
久松郁実
久松郁実
久松郁実
久松郁実

久松郁実

  • mostly-aquatic-velvet
    mostly-aquatic-velvet liked this · 5 months ago
  • ilmi0labirint0
    ilmi0labirint0 liked this · 10 months ago
  • flamafhakol
    flamafhakol liked this · 1 year ago
  • zero-aves
    zero-aves liked this · 1 year ago
  • wintesm
    wintesm liked this · 2 years ago
  • saltythexfilesindianjonescop
    saltythexfilesindianjonescop liked this · 2 years ago
  • save-m
    save-m liked this · 2 years ago
  • absyn-th
    absyn-th reblogged this · 2 years ago
  • climbthehighesttower
    climbthehighesttower liked this · 2 years ago
  • decaffeinatedcashdeantree
    decaffeinatedcashdeantree liked this · 2 years ago
  • bug88188188
    bug88188188 liked this · 2 years ago
  • io-robirobot
    io-robirobot liked this · 2 years ago
  • bunn-a-boo
    bunn-a-boo reblogged this · 2 years ago
  • bunn-a-boo
    bunn-a-boo liked this · 2 years ago
  • amirecoy
    amirecoy liked this · 2 years ago
  • dndgvyd
    dndgvyd liked this · 2 years ago
  • feefan
    feefan liked this · 2 years ago
  • thehighrollerd
    thehighrollerd liked this · 2 years ago
  • tethys-the-aquatic-sea-godness
    tethys-the-aquatic-sea-godness reblogged this · 2 years ago
  • tethys-the-aquatic-sea-godness
    tethys-the-aquatic-sea-godness liked this · 2 years ago
  • popposposts
    popposposts reblogged this · 2 years ago
  • popposposts
    popposposts liked this · 2 years ago
  • red-ace-in-space
    red-ace-in-space liked this · 2 years ago
  • thelocus
    thelocus reblogged this · 2 years ago
  • spectacledbutch
    spectacledbutch liked this · 2 years ago
  • lourdesangela
    lourdesangela reblogged this · 2 years ago
  • starlight-in-a-bottle
    starlight-in-a-bottle reblogged this · 2 years ago
  • iaminvencible
    iaminvencible liked this · 2 years ago
  • inthe-interim
    inthe-interim reblogged this · 2 years ago
  • deepestanimeartmuffin
    deepestanimeartmuffin reblogged this · 2 years ago
  • theparadoxwanderer
    theparadoxwanderer reblogged this · 2 years ago
  • phantomoftheshadowsidk
    phantomoftheshadowsidk liked this · 2 years ago
  • kubleeka
    kubleeka reblogged this · 2 years ago
  • kubleeka
    kubleeka liked this · 2 years ago
  • insert-math-username
    insert-math-username reblogged this · 2 years ago
  • itsrainyheart
    itsrainyheart liked this · 2 years ago
  • muljalija
    muljalija liked this · 2 years ago
thehkr - 無標題
無標題

122 posts

Explore Tumblr Blog
Search Through Tumblr Tags