82 posts
Warm summer temperatures often lead to dangerous blooms of phytoplankton in lakes, reservoirs and along our coastlines. These toxin-containing aquatic organisms can sicken people and pets, contaminate drinking water, and force closures at boating and swimming sites.
In this image, a severe bloom of toxic blue-green algae is spreading across the western half of Lake Erie. Taken on July 30, 2019 by the Operational Land Imager on our Landsat 8 satellite, this image shows green patches where the bloom was most dense and where toxicity levels were unsafe for recreational activities. Around the time of this image, the bloom covered about 300 square miles of Lake Erie’s surface, roughly the size of New York City. By August 13, the bloom had doubled to more than 620 square miles. That’s eight times the size of Cleveland.
The dominant organism—a Microcystis cyanobacteria—produces the toxin microcystin, can cause liver damage, numbness, dizziness, and vomiting. On July 29, 2019, the National Oceanic Atmospheric Administration (NOAA) reported unsafe toxin concentrations in Lake Erie and have since advised people (and their pets) to stay away from areas where scum is forming on the water surface.
You can stay informed about harmful algal blooms using a new mobile app that will send you alerts on potentially harmful algal blooms in your area. Called CyAN, it’s based on NASA satellite data of the color changes in lakes and other bodies of water. It serves as our eye-in-the-sky early warning system, alerting the public and local officials to when dangerous waters may be in bloom.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Saturn Behind the Moon Image Credit: Peter Patonai (Astroscape Photography)
Explanation: What’s that next to the Moon? Saturn. In its monthly trip around the Earth – and hence Earth’s sky – our Moon passed nearly in front of Sun-orbiting Saturn earlier this week. Actually the Moon passed directly in front of Saturn from the viewpoints of a wide swath of Earth’s Southern Hemisphere. The featured image from Sydney, Australia captured the pair a few minutes before the eclipse. The image was a single shot lasting only 1/500th of a second, later processed to better highlight both the Moon and Saturn. Since Saturn is nearly opposite the Sun, it can be seen nearly the entire night, starting at sunset, toward the south and east. The gibbous Moon was also nearly opposite the Sun, and so also visible nearly the entire night – it will be full tomorrow night. The Moon will occult Saturn again during every lap it makes around the Earth this year.
∞ Source: apod.nasa.gov/apod/ap190814.html
ig: studylustre
The first confirmation of a planet orbiting a star outside our solar system happened in 1995. We now know that these worlds – also known as exoplanets – are abundant. So far, we’ve confirmed more than 4000. Even though these planets are far, far away, we can still study them using ground-based and space-based telescopes.
Our upcoming James Webb Space Telescope will study the atmospheres of the worlds in our solar system and those of exoplanets far beyond. Could any of these places support life? What Webb finds out about the chemical elements in these exoplanet atmospheres might help us learn the answer.
Most known exoplanets have been discovered because they partially block the light of their suns. This celestial photo-bombing is called a transit.
During a transit, some of the star’s light travels through the planet’s atmosphere and gets absorbed.
The light that survives carries information about the planet across light-years of space, where it reaches our telescopes.
(However, the planet is VERY small relative to the star, and VERY far away, so it is still very difficult to detect, which is why we need a BIG telescope to be sure to capture this tiny bit of light.)
Stars emit light at many wavelengths. Like a prism making a rainbow, we can separate light into its separate wavelengths. This is called a spectrum. Learn more about how telescopes break down light here.
Visible light appears to our eyes as the colors of the rainbow, but beyond visible light there are many wavelengths we cannot see.
As light is traveling through the planet’s atmosphere, some wavelengths get absorbed.
Which wavelengths get absorbed depends on which molecules are in the planet’s atmosphere. For example, carbon monoxide molecules will capture different wavelengths than water vapor molecules.
So, when we look at that planet in front of the star, some of the wavelengths of the starlight will be missing, depending on which molecules are in the atmosphere of the planet.
Learning about the atmospheres of other worlds is how we identify those that could potentially support life…
…bringing us another step closer to answering one of humanity’s oldest questions: Are we alone?
Watch the full video where this method of hunting for distant planets is explained:
To learn more about NASA’s James Webb Space Telescope, visit the website, or follow the mission on Facebook, Twitter and Instagram.
Text and graphics credit Space Telescope Science Institute
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
About 45 million light-years away, in another corner of the cosmos, lies spiral galaxy NGC 1097. Though this Hubble Space Telescope image zooms in toward the core, the galaxy’s vast spiral arms span over 100,000 light-years as they silently sweep through space. At the heart of this galaxy lurks a black hole that is about 100 million times as massive as the Sun.
The supermassive black hole is voraciously eating up surrounding matter, which forms a doughnut-shaped ring around it. Matter that’s pulled into the black hole releases powerful radiation, making the star-filled center of the galaxy even brighter. Hubble’s observations have led to the discovery that while the material that is drawn toward NGC 1097’s black hole may be doomed to die, new stars are bursting into life in the ring around it.
This sparkling spiral galaxy is especially interesting to both professional scientists and amateur astronomers. It is a popular target for supernova hunters ever since the galaxy experienced three supernovas in relatively rapid succession — just over a decade, between 1992 and 2003. Scientists are intrigued by the galaxy’s satellites — smaller “dwarf” galaxies that orbit NGC 1097 like moons. Studying this set of galaxies could reveal new information about how galaxies interact with each other and co-evolve.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Check out features of our feline friends that have come to life as interstellar phenomena!
Pictured first, the Cat’s Paw Nebula is located about 4,200-5,500 light-years from Earth – situated in our very own Milky Way Galaxy. It was named for the large, round features that create the impression of a feline footprint and was captured by our Spitzer Space Telescope. After gas and dust inside the nebula collapse to form stars, the stars may in turn heat up the pressurized gas surrounding them. This process causes the gas to expand into space and form the bright red bubbles you see. The green areas show places where radiation from hot stars collided with large molecules called “polycyclic aromatic hydrocarbons,” causing them to fluoresce.
Next, you’ll find the Cat’s Eye Nebula. Residing 3,000 light-years from Earth, the Cat’s Eye represents a brief, yet glorious, phase in the life of a sun-like star. This nebula’s dying central star may have produced the simple, outer pattern of dusty concentric shells by shrugging off outer layers in a series of regular convulsions. To create this view, Hubble Space Telescope archival image data have been reprocessed. Compared to well-known Hubble pictures, the alternative processing strives to sharpen and improve the visibility of details in light and dark areas of the nebula and also applies a more complex color palette. Gazing into the Cat’s Eye, astronomers may well be seeing the fate of our sun, destined to enter its own planetary nebula phase of evolution … in about 5 billion years.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
For 10 years, our Fermi Gamma-ray Space Telescope has scanned the sky for gamma-ray bursts (GRBs), the universe’s most luminous explosions!
Most GRBs occur when some types of massive stars run out of fuel and collapse to create new black holes. Others happen when two neutron stars, superdense remnants of stellar explosions, merge. Both kinds of cataclysmic events create jets of particles that move near the speed of light.
A new catalog of the highest-energy blasts provides scientists with fresh insights into how they work. Below are five record-setting events from the catalog that have helped scientists learn more about GRBs:
The short burst 081102B, which occurred in the constellation Boötes on Nov. 2, 2008, is the briefest LAT-detected GRB, lasting just one-tenth of a second!
Long-lived burst 160623A, spotted on June 23, 2016, in the constellation Cygnus, kept shining for almost 10 hours at LAT energies — the longest burst in the catalog.
For both long and short bursts, the high-energy gamma-ray emission lasts longer than the low-energy emission and happens later.
The highest-energy individual gamma ray detected by Fermi’s LAT reached 94 billion electron volts (GeV) and traveled 3.8 billion light-years from the constellation Leo. It was emitted by 130427A, which also holds the record for the most gamma rays — 17 — with energies above 10 GeV.
The farthest known GRB occurred 12.2 billion light-years away in the constellation Carina. Called 080916C, researchers calculate the explosion contained the power of 9,000 supernovae.
The known distance to 090510 helped test Einstein’s theory that the fabric of space-time is smooth and continuous. Fermi detected both a high-energy and a low-energy gamma ray at nearly the same instant. Having traveled the same distance in the same amount of time, they showed that all light, no matter its energy, moves at the same speed through the vacuum of space.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Two galaxies are locked in a deadly embrace in this Hubble image. Once normal, sedate spiral galaxies like the Milky Way, this galactic pair has spent the past few hundred million years sparring. The clash is so violent that stars have been ripped from their host galaxies to form a streaming arc between the two.
The far-flung stars and streamers of gas stretch out into space, creating long tidal tails reminiscent of antennae (not visible in this close-up Hubble view). Clouds of gas blossom out in bright pink and red, surrounding the bright flashes of blue star-forming regions — some of which are partially obscured by dark patches of dust.
Hubble’s observations have uncovered over 1,000 bright, young star clusters bursting to life as a result of the head-on wreck. The sweeping spiral-like patterns, traced by bright blue star clusters, shows the result of a firestorm of star-birth activity, which was triggered by the collision. The rate of star formation is so high that the Antennae galaxies are said to be in a state of starburst, a period in which all of the gas within the galaxies is being used to form stars. This cannot last forever, and neither can the separate galaxies; eventually the nuclei will coalesce and the galaxies will begin their retirement together as one large elliptical galaxy.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Have you ever looked up at the night sky and wondered … what other kinds of planets are out there? Our Transiting Exoplanet Survey Satellite (TESS) just spent its first year bringing us a step closer to exploring the planets around the nearest and brightest stars in the southern sky and is now doing the same in the north.
TESS has been looking for dips in the brightness of stars that could be a sign of something we call “transits.” A transit happens when a planet passes between its star and us. It’s like when a bug flies in front of a light bulb. You may not notice the tiny drop in brightness when the bug blocks some of the light from reaching your eyes, but a sensitive camera could. The cameras on TESS are designed to detect those tiny drops in starlight caused by a transiting planet many light-years away.
In the last year TESS has found 24 planets and more than 900 new candidate planets. And TESS is only halfway through its goal of mapping over three-fourths of our skies, which means there’s plenty more to discover!
TESS has been looking for planets around the closest, brightest stars because they will be the best planets to explore more thoroughly with future missions. We can even see a few of these stars with our own eyes, which means we’ve been looking at these planets for millions of years and didn’t even know it.
We spent thousands of years staring at our closest neighbor, the Moon, and asking questions: What is it like? Could we live there? What is it made of (perhaps cheese?). Of course, now we can travel to the Moon and explore it ourselves (turns out, not made of cheese).
But for the worlds TESS is discovering, the commute to answer those questions would be killer. It took 35 years for Voyager 1 to cross into interstellar space (the region between stars), and it’s zipping along at over 38,000 mph! At that rate it would take more than a half-a-million years to reach the nearest stars and planets that TESS is discovering.
While exploring these distant worlds in person isn’t an option, we have other ways of learning what they are like. TESS can tell us where a planet is, its size and its overall temperature, but observatories on the ground and in space like our upcoming James Webb Space Telescope will be able to learn even more — like whether or not a planet has an atmosphere and what it’s made of.
Here are a few of the worlds that our planet hunter discovered in the last year.
The first Earth-sized planet discovered by TESS is about 90% the size of our home planet and orbits a star 53 light-years away. The planet is called HD 21749 c (what a mouthful!) and is actually the second planet TESS has discovered orbiting that star, which you can see in the southern constellation Reticulum.
The planet may be Earth-sized, but it would not be a pleasant place to live. It’s very close to its star and could have a surface temperature of 800 degrees Fahrenheit, which would be like sitting inside a commercial pizza oven.
The other planet discovered in that star system, HD 21749 b, is about three times Earth’s size and orbits the star every 36 days. It has the longest orbit of any planet within 100 light-years of our solar system detected with TESS so far.
The planet is denser than Neptune, but isn’t made of rock. Scientists think it might be a water planet or have a totally new type of atmosphere. But because the planet isn’t ideal for follow-up study, for now we can only theorize what the planet is actually like. Could it be made of pudding? Maybe … but probably not.
One of the first planets TESS discovered, called LHS 3844 b, is roughly Earth’s size, but is so close to its star that it orbits in just 11 hours. For reference, Mercury, which is more than two and a half times closer to the Sun than we are, completes an orbit in just under three months.
Because the planet is so close to its star, the day side of the planet might get so hot that pools and oceans of magma form on its rocky surface, which would make for a rather unpleasant day at the beach.
The smallest planet TESS has discovered, called L 98-59 b, is between the size of Earth and Mars and orbits its star in a little over two days. Its star also hosts two other TESS-discovered worlds.
Because the planet lies so close to its star, it gets 22 times the radiation we get here on Earth. Yikes! It is also not located in its star’s habitable zone, which means there probably isn’t any liquid water on the surface. Those two factors make it an unlikely place to find life, but scientists believe it will be a good candidate for follow-up studies by other telescopes.
While TESS’s team is hunting for planets around close, bright stars, it’s also collecting information on all sorts of other things. From transits around dimmer, farther stars to other objects in our solar system and events outside our galaxy, data from TESS can help astronomers learn a lot more about the universe. Comets and black holes and supernovae, oh my!
Interested in joining the hunt? TESS’s data are released online, so citizen scientists around the world can help us discover new worlds and better understand our universe.
Stay tuned for TESS’s next year of science as it monitors the stars that more than 6.5 billion of us in the northern hemisphere see every night.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
We are working with Boeing and SpaceX to build human spaceflight systems, like rockets and spacecraft, to take astronauts to the International Space Station. These companies will fly astronauts to orbit around Earth while we focus on plans to explore deeper into our solar system.
Get out your art supplies and use your creative imagination to show us the present and future of traveling in space!
There are no grocery stores in space, but there may soon be farms. Very small farms that are important to a crew conducting a mission to deep space. That’s because our astronauts will need to grow some of their own food. Researchers on Earth and astronauts on the International Space Station are already showing what is needed to grow robust plants in orbit.
What would you take to space? Astronaut Suni Williams took a cutout of her dog, Gorbie, on her first mission to the International Space Station.
Kids 4 to 12, draw what you would take and enter it in our Children’s Artwork Calendar contest! Your entry could be beamed to the space station!
Go to http://go.nasa.gov/2fvRLNf for more information about the competition’s themes, rules and deadlines plus the entry form.
Get your parent’s permission, of course!
Email your entry form and drawing to us at: ksc-connect2ccp@mail.nasa.gov
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
When Neil Armstrong took his first steps on the Moon 50 years ago, he famously said “that’s one small step for a man, one giant leap for mankind.” He was referring to the historic milestone of exploring beyond our own planet — but there’s also another way to think about that giant leap: the massive effort to develop technologies to safely reach, walk on the Moon and return home led to countless innovations that have improved life on Earth.
Armstrong took one small step on the lunar surface, but the Moon landing led to a giant leap forward in innovations for humanity.
Here are five examples of technology developed for the Apollo program that we’re still using today:
As soon as we started planning to send astronauts into space, we faced the problem of what to feed them — and how to ensure the food was safe to eat. Can you imagine getting food poisoning on a spacecraft, hundreds of thousands of miles from home?
We teamed up with a familiar name in food production: the Pillsbury Company. The company soon realized that existing quality control methods were lacking. There was no way to be certain, without extensive testing that destroyed the sample, that the food was free of bacteria and toxins.
Pillsbury revamped its entire food-safety process, creating what became the Hazard Analysis and Critical Control Point system. Its aim was to prevent food safety problems from occurring, rather than catch them after the fact. They managed this by analyzing and controlling every link in the chain, from the raw materials to the processing equipment to the people handling the food.
Today, this is one of the space program’s most far-reaching spinoffs. Beyond keeping the astronaut food supply safe, the Hazard Analysis and Critical Point system has also been adopted around the world — and likely reduced the risk of bacteria and toxins in your local grocery store.
The Apollo spacecraft was revolutionary for many reasons. Did you know it was the first vehicle to be controlled by a digital computer? Instead of pushrods and cables that pilots manually adjusted to manipulate the spacecraft, Apollo’s computer sent signals to actuators at the flick of a switch.
Besides being physically lighter and less cumbersome, the switch to a digital control system enabled storing large quantities of data and programming maneuvers with complex software.
Before Apollo, there were no digital computers to control airplanes either. Working together with the Navy and Draper Laboratory, we adapted the Apollo digital flight computer to work on airplanes. Today, whatever airline you might be flying, the pilot is controlling it digitally, based on the technology first developed for the flight to the Moon.
A shock absorber descended from Apollo-era dampers and computers saves lives by stabilizing buildings during earthquakes.
Apollo’s Saturn V rockets had to stay connected to the fueling tubes on the launchpad up to the very last second. That presented a challenge: how to safely move those tubes out of the way once liftoff began. Given how fast they were moving, how could we ensure they wouldn’t bounce back and smash into the vehicle?
We contracted with Taylor Devices, Inc. to develop dampers to cushion the shock, forcing the company to push conventional shock isolation technology to the limit.
Shortly after, we went back to the company for a hydraulics-based high-speed computer. For that challenge, the company came up with fluidic dampers—filled with compressible fluid—that worked even better. We later applied the same technology on the Space Shuttle’s launchpad.
The company has since adapted these fluidic dampers for buildings and bridges to help them survive earthquakes. Today, they are successfully protecting structures in some of the most quake-prone areas of the world, including Tokyo, San Francisco and Taiwan.
We’ve all seen runners draped in silvery “space blankets” at the end of marathons, but did you know the material, called radiant barrier insulation, was actually created for space?
Temperatures outside of Earth’s atmosphere can fluctuate widely, from hundreds of degrees below to hundreds above zero. To better protect our astronauts, during the Apollo program we invented a new kind of effective, lightweight insulation.
We developed a method of coating mylar with a thin layer of vaporized metal particles. The resulting material had the look and weight of thin cellophane packaging, but was extremely reflective—and pound-for-pound, better than anything else available.
Today the material is still used to protect astronauts, as well as sensitive electronics, in nearly all of our missions. But it has also found countless uses on the ground, from space blankets for athletes to energy-saving insulation for buildings. It also protects essential components of MRI machines used in medicine and much, much more.
Image courtesy of the U.S. Marines
Patients in hospitals are hooked up to sensors that send important health data to the nurse’s station and beyond — which means when an alarm goes off, the right people come running to help.
This technology saves lives every day. But before it reached the ICU, it was invented for something even more extraordinary: sending health data from space down to Earth.
When the Apollo astronauts flew to the Moon, they were hooked up to a system of sensors that sent real-time information on their blood pressure, body temperature, heart rate and more to a team on the ground.
The system was developed for us by Spacelabs Healthcare, which quickly adapted it for hospital monitoring. The company now has telemetric monitoring equipment in nearly every hospital around the world, and it is expanding further, so at-risk patients and their doctors can keep track of their health even outside the hospital.
Only a few people have ever walked on the Moon, but the benefits of the Apollo program for the rest of us continue to ripple widely.
In the years since, we have continued to create innovations that have saved lives, helped the environment, and advanced all kinds of technology.
Now we’re going forward to the Moon with the Artemis program and on to Mars — and building ever more cutting-edge technologies to get us there. As with the many spinoffs from the Apollo era, these innovations will transform our lives for generations to come.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
50 years ago, three Apollo astronauts rode this 363 foot tall rocket, the Saturn V, embarking on one of the greatest missions of mankind – to step foot on another world. On July 20, 1969, astronauts Buzz Aldrin, Michael Collins and Neil Armstrong made history when they arrived at the Moon. Thanks to the Saturn V rocket, we were able to complete this epic feat, returning to the lunar surface a total of six times. The six missions that landed on the Moon returned a wealth of scientific data and almost 400 kilograms of lunar samples.
In honor of this historic launch, the National Air and Space Museum is projecting the identical rocket that took our astronauts to the Moon on the Washington Monument in Washington, D.C.
This week, you can watch us salute our Apollo 50th heroes and look forward to our next giant leap for future missions to the Moon and Mars. Tune in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
On this day 50 years ago, human beings embarked on a journey to set foot on another world for the very first time.
At 9:32 a.m. EDT, millions watched as Apollo astronauts Neil Armstrong, Buzz Aldrin and Michael Collins lifted off from Launch Pad 39A at the Kennedy Space Center in Cape Canaveral, Florida, flying high on the most powerful rocket ever built: the mighty Saturn V.
As we prepare to return humans to the lunar surface with our Artemis program, we’re planning to make history again with a similarly unprecedented rocket, the Space Launch System (SLS). The SLS will be our first exploration-class vehicle since the Saturn V took American astronauts to the Moon a decade ago. With its superior lift capability, the SLS will expand our reach into the solar system, allowing astronauts aboard our Orion spacecraft to explore multiple, deep-space destinations including near-Earth asteroids, the Moon and ultimately Mars.
So, how does the Saturn V measure up half a century later? Let’s take a look.
Every human who has ever stepped foot on the Moon made it there on a Saturn V rocket. The Saturn rockets were the driving force behind our Apollo program that was designed to land humans on the Moon and return them safely back to Earth.
Developed at our Marshall Space Flight Center in the 1960s, the Saturn V rocket (V for the Roman numeral “5”) launched for the first time uncrewed during the Apollo 4 mission on November 9, 1967. One year later, it lifted off for its first crewed mission during Apollo 8. On this mission, astronauts orbited the Moon but did not land. Then, on July 16, 1969, the Apollo 11 mission was the first Saturn V flight to land astronauts on the Moon. In total, this powerful rocket completed 13 successful missions, landing humans on the lunar surface six times before lifting off for the last time in 1973.
Just as the Saturn V was the rocket of the Apollo generation, the Space Launch System will be the driving force behind a new era of spaceflight: the Artemis generation.
During our Artemis missions, SLS will take humanity farther than ever before. It is the vehicle that will return our astronauts to the Moon by 2024, transporting the first woman and the next man to a destination never before explored – the lunar South Pole. Over time, the rocket will evolve into increasingly more powerful configurations to provide the foundation for human exploration beyond Earth’s orbit to deep space destinations, including Mars.
SLS will take flight for the first time during Artemis 1 where it will travel 280,000 miles from Earth – farther into deep space than any spacecraft built for humans has ever ventured.
The Saturn V was big.
In fact, the Vehicle Assembly Building at Kennedy Space Center is one of the largest buildings in the world by volume and was built specifically for assembling the massive rocket. At a height of 363 feet, the Saturn V rocket was about the size of a 36-story building and 60 feet taller than the Statue of Liberty!
Measured at just 41 feet shy of the Saturn V, the initial SLS rocket will stand at a height of 322 feet. Because this rocket will evolve into heavier lift capacities to facilitate crew and cargo missions beyond Earth’s orbit, its size will evolve as well. When the SLS reaches its maximum lift capability, it will stand at a height of 384 feet, making it the tallest rocket in the world.
For the 1960s, the Saturn V rocket was a beast – to say the least.
Fully fueled for liftoff, the Saturn V weighed 6.2 million pounds and generated 7.6 million pounds of thrust at launch. That is more power than 85 Hoover Dams! This thrust came from five F-1 engines that made up the rocket’s first stage. With this lift capability, the Saturn V had the ability to send 130 tons (about 10 school buses) into low-Earth orbit and about 50 tons (about 4 school buses) to the Moon.
Photo of SLS rocket booster test
Unlike the Saturn V, our SLS rocket will evolve over time into increasingly more powerful versions of itself to accommodate missions to the Moon and then beyond to Mars.
The first SLS vehicle, called Block 1, will weigh 5.75 million pounds and produce 8.8 million pounds of thrust at time of launch. That’s 15 percent more than the Saturn V produced during liftoff! It will also send more than 26 tons beyond the Moon. Powered by a pair of five-segment boosters and four RS-25 engines, the rocket will reach the period of greatest atmospheric force within 90 seconds!
Following Block 1, the SLS will evolve five more times to reach its final stage, Block 2 Cargo. At this stage, the rocket will provide 11.9 million pounds of thrust and will be the workhorse vehicle for sending cargo to the Moon, Mars and other deep space destinations. SLS Block 2 will be designed to lift more than 45 tons to deep space. With its unprecedented power and capabilities, SLS is the only rocket that can send our Orion spacecraft, astronauts and large cargo to the Moon on a single mission.
The Saturn V was designed as a multi-stage system rocket, with three core stages. When one system ran out of fuel, it separated from the spacecraft and the next stage took over. The first stage, which was the most powerful, lifted the rocket off of Earth’s surface to an altitude of 68 kilometers (42 miles). This took only 2 minutes and 47 seconds! The first stage separated, allowing the second stage to fire and carry the rest of the stack almost into orbit. The third stage placed the Apollo spacecraft and service module into Earth orbit and pushed it toward the Moon. After the first two stages separated, they fell into the ocean for recovery. The third stage either stayed in space or crashed into the Moon.
Much like the Saturn V, our Space Launch System is also a multi-stage rocket. Its three stages (the solid rocket boosters, core stage and upper stage) will each take turns thrusting the spacecraft on its trajectory and separating after each individual stage has exhausted its fuel. In later, more powerful versions of the SLS, the third stage will carry both the Orion crew module and a deep space habitat module.
Just as the Saturn V and Apollo era signified a new age of exploration and technological advancements, the Space Launch System and Artemis missions will bring the United States into a new age of space travel and scientific discovery.
Join us in celebrating the 50th anniversary of the Apollo 11 Moon landing and hear about our future plans to go forward to the Moon and on to Mars by tuning in to a special two-hour live NASA Television broadcast at 1 p.m. ET on Friday, July 19. Watch the program at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
This colorful image, taken by our Hubble Space Telescope between Feb. 12 and Feb. 18, 2018 , celebrated the Earth-orbiting observatory’s 28th anniversary of viewing the heavens, giving us a window seat to the universe’s extraordinary tapestry of stellar birth and destruction.
At the center of the photo, a monster young star 200,000 times brighter than our Sun is blasting powerful ultraviolet radiation and hurricane-like stellar winds, carving out a fantasy landscape of ridges, cavities, and mountains of gas and dust.
This region epitomizes a typical, raucous stellar nursery full of birth and destruction. The clouds may look majestic and peaceful, but they are in a constant state of flux from the star’s torrent of searing radiation and high-speed particles from stellar winds. As the monster star throws off its natal cocoon of material with its powerful energy, it is suppressing star formation around it.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Good Omens meets Sherlock?
If #NationalCheeseDay has you thinking about the Moon, you’re not alone. 🧀
In 1965, the Ranger 9 probe captured these sharp images of a cratered lunar surface just moments before its planned impact. What we learned paved the way for Apollo. #Apollo50th
The final stretch.
One hundred years ago, Einstein’s theory of general relativity was supported by the results of a solar eclipse experiment. Even before that, Einstein had developed the theory of special relativity — a way of understanding how light travels through space.
Particles of light — photons — travel through a vacuum at a constant pace of more than 670 million miles per hour.
All across space, from black holes to our near-Earth environment, particles are being accelerated to incredible speeds — some even reaching 99.9% the speed of light! By studying these super fast particles, we can learn more about our galactic neighborhood.
Here are three ways particles can accelerate:
Electromagnetic fields are the same forces that keep magnets on your fridge! The two components — electric and magnetic fields — work together to whisk particles at super fast speeds throughout the universe. In the right conditions, electromagnetic fields can accelerate particles at near-light-speed.
We can harness electric fields to accelerate particles to similar speeds on Earth! Particle accelerators, like the Large Hadron Collider and Fermilab, use pulsed electromagnetic fields to smash together particles and produce collisions with immense amounts of energy. These experiments help scientists understand the Big Bang and how it shaped the universe!
Magnetic fields are everywhere in space, encircling Earth and spanning the solar system. When these magnetic fields run into each other, they can become tangled. When the tension between the crossed lines becomes too great, the lines explosively snap and realign in a process known as magnetic reconnection. Scientists suspect this is one way that particles — for example, the solar wind, which is the constant stream of charged particles from the Sun — are sped up to super fast speeds.
When magnetic reconnection occurs on the side of Earth facing away from the Sun, the particles can be hurled into Earth’s upper atmosphere where they spark the auroras.
Particles can be accelerated by interactions with electromagnetic waves, called wave-particle interactions. When electromagnetic waves collide, their fields can become compressed. Charged particles bounce back and forth between the waves, like a ball bouncing between two merging walls. These types of interactions are constantly occurring in near-Earth space and are responsible for damaging electronics on spacecraft and satellites in space.
Wave-particle interactions might also be responsible for accelerating some cosmic rays from outside our solar system. After a supernova explosion, a hot, dense shell of compressed gas called a blast wave is ejected away from the stellar core. Wave-particle interactions in these bubbles can launch high-energy cosmic rays at 99.6% the speed of light.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Vitaly Bulgarov
As part of the Commercial Lunar Payload Services (CLPS) initiative, we’ve selected the first American companies that will deliver our science and technology payloads to the Moon.
Seen above from left to right are lander prototypes from:
Astrobotic of Pittsburgh, Pennsylvania
Intuitive Machines of Houston, Texas
Orbit Beyond of Edison, New Jersey
Astrobotic of Pittsburgh has proposed to fly as many as 14 payloads to a large crater on the near side of the Moon.
Intuitive Machines of Houston has proposed to fly as many as five payloads to a scientifically intriguing dark spot on the Moon.
Orbit Beyond of Edison, New Jersey, has proposed to fly as many as four payloads to a lava plain in one of the Moon’s craters.
Each company is charged with demonstrating technology that will shape the development of future landers and other exploration systems needed for humans to return to the Moon’s surface under the new Artemis program. Artemis is the program that will send the first woman and the next man to the Moon by 2024 and develop a sustainable human presence on the Moon by 2028. The program takes its name from the twin sister of Apollo and goddess of the Moon in Greek mythology.
Together we are going to the Moon—to stay.
Watch the CLPS announcement on our YouTube channel to learn about how each company will prepare us for human missions to the Moon: https://www.youtube.com/watch?v=qODDdqK9rL4
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Two of the three Astrobee robots are scheduled to launch to space this month from our Wallops Flight Facility in Virginia! Tune in to the launch at www.nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Accompanying their mission is a zero-g indicator, informally known as “Little Earth”.
Greetings fellow Earthlings! Curious about my first week on the International Space Station? What does a normal day look like when you’re living and working hundreds of miles above Earth? Take a look at some photos from my first week, when I was still learning the ropes from my new roommates!
Talk about a warm welcome! I arrived on March 3, 2019 when the SpaceX Crew Dragon docked to the Space Station for the first time. This historic mission marked the first time a commercially built American spacecraft intended for human spaceflight docked to the orbital lab. Though un-crewed, Dragon was carrying two very important passengers – my space travel companion Ripley and myself, Astronaut Little Earth. During my three-day introduction to the station, two Expedition 59 astronauts, Anne McClain and David Saint-Jacques, taught me what it takes to be a Space Station crew member!
First thing’s first – the VIEW. After the traditional hatch opening welcome ceremony, I was off to the Cupola Observational Module. Designed for the observation of operations outside the station, this module’s six side windows also provide spectacular views of our Mother Earth! My roommate Anne McClain introduced me to the beautiful vantage point of space. Clearly, I was a little star-struck.
Next, it was time to get to work – lending a hand with Anne McClain’s space suit sizing. Did you know you actually grow in zero gravity? Astronaut McClain has grown two inches on her current mission in space. Crew members must account for this change in growth to know if different components need to be switched out of their individual spacesuit for a better fit. When pressurized and filled with oxygen, the spacesuits become stiff objects around the astronauts inside, making it critical they fit comfortably. These spacesuits are essentially mini spacecraft that provide protection and a means of survival for the astronauts as they venture outside the space station and into the harsh environment of space.
Fueled up and ready for the day, my next agenda item was emergency preparedness practice. There is no 9-1-1 in space, and three events that could pose a dangerous threat to the Space Station include a fire, a depressurization event or an ammonia breakout. Here, Canadian Astronaut David Saint-Jacques and I practiced emergency mask donning in the unlikely event of an ammonia leak into the station’s atmosphere.
From astronaut to astro-plumber, I traded my mask for goggles with Astronaut Anne McClain during a briefing on plumbing routine maintenance. Because the International Space Station never returns to Earth, the crew is trained to regularly inspect, replace and clean parts inside the station.
Talk about staying healthy! After a busy day, Astronaut McClain and I continued to hit the ground running, literally. Crew members are required to work out daily for about two hours to help keep their heart, bones and muscles strong in zero gravity. The harness McClain is wearing is very much like a backpacking harness, designed to evenly distribute weight across her upper body and is attached to a system of bungees and cords. Depending on the tension in these attachments, a specific load of pressure is applied to her body onto the machine.
Watch out, deadlift going on. Running isn’t the only gym exercise they have onboard; strength training is also incorporated into the daily exercise regime.
You can look, just don’t touch they told me. Whoops. This was a definite highlight, my Canadarm 2 briefing. That black nob by my hand is the translational hand controller. It operates the up and down function of the 57.7-foot-long robotic arm. The Canadarm2 lends a literal helping hand with many station functions, using a “hand” known as a Latching End Effector to perform tasks such as in orbit maintenance, moving supplies and performing “cosmic catches”.
Whew, you work up a big appetite working on the Space Station. Ending the day, I was introduced to a crew favorite, group dinner! Astronauts and cosmonauts from around the world come together on the orbital lab and bring with them a variety of cultures and … food! Though each country is responsible for feeding its own members, when on board the astronauts can share as they please. A new friend of mine, Paxi from the European Space Agency, welcomed my visit and we split a delicious space-shrimp cocktail.
And that’s a wrap to a busy first week aboard the International Space Station! Learn more about what it means to live and work aboard the International Space Station, and click here to see if you have what it takes to become a NASA Astronaut. Until next time!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Throw open the windows and break out the feather duster, because spring is here and it’s time to do a little cleaning! Fortunately, no one has to tidy up the dust in space — because there’s a lot of it — around 100 tons rain down on Earth alone every day! And there’s even more swirling around the solar system, our Milky Way galaxy, other galaxies and the spaces in between.
By studying the contents of the dust in your house — which can include skin cells, pet fur, furniture fibers, pollen, concrete particles and more — scientists learn a lot about your environment. In the same way, scientists can learn a lot by looking at space dust. Also called cosmic dust, a fleck of space dust is usually smaller than a grain of sand and is made of rock, ice, minerals or organic compounds. Scientists can study cosmic dust to learn about how it formed and how the universe recycles material.
“We are made of star-stuff,” Carl Sagan famously said. And it’s true! When a star dies, it sheds clouds of gas in strong stellar winds or in an explosion called a supernova. As the gas cools, minerals condense. Recent observations by our SOFIA mission suggest that in the wake of a supernova shockwave, dust may form more rapidly than scientists previously thought. These clouds of gas and dust created by the deaths of stars can sprawl across light-years and form new stars — like the Horsehead Nebula pictured above. Disks of dust and gas form around new stars and produce planets, moons, asteroids and comets. Here on Earth, some of that space dust eventually became included in living organisms — like us! Billions of years from now, our Sun will die too. The gas and dust it sheds will be recycled into new stars and planets and so on and so forth, in perpetuity!
Astronomers originally thought dust was a nuisance that got in the way of seeing the objects it surrounded. Dust scatters and absorbs light from stars and emits heat as infrared light. Once we started using infrared telescopes, we began to understand just how important dust is in the universe and how beautiful it can be. The picture of the Andromeda galaxy above was taken in the infrared by our Spitzer Space Telescope and reveals detailed spirals of dust that we can’t see in an optical image.
We also see plenty of dust right here in our solar system. Saturn’s rings are made of mostly ice particles and some dust, but scientists think that dust from meteorites may be darkening the rings over time. Jupiter also has faint dusty rings, although they’re hard to see — Voyager 1 only discovered them when it saw them backlit by the Sun. Astronomers think the rings formed when meteorite impacts on Jupiter’s moons released dust into orbit. The Juno spacecraft took the above picture in 2016 from inside the rings, looking out at the bright star Betelgeuse.
Copyright Josh Calcino, used with permission
And some space dust you can see from right here on Earth! In spring or autumn, right before sunrise or after sunset, you may be able to catch a glimpse of a hazy cone of light above the horizon created when the Sun’s rays are scattered by dust in the inner solar system. You can see an example in the image above, extending from above the tree on the horizon toward a spectacular view of the Milky Way. This phenomenon is called zodiacal light — and the dust that’s reflecting the sunlight probably comes from icy comets. Those comets were created by the same dusty disk that that formed our planets and eventually you and the dust under your couch!
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
On Friday, March 29, Christina Koch and Anne McClain were scheduled to perform a spacewalk together to upgrade the power systems of the International Space Station. It would have been the first all-female spacewalk in human history. While disappointing to many people, after the last spacewalk was completed on March 22, NASA changed the assignments to protect the safety of the crew and the timing of the mission. Now, Christina Koch and Nick Hague will be performing this upcoming spacewalk, leaving lots of people wondering: What’s the deal?
Spacesuits are not “one size fits all.” We do our best to anticipate the spacesuit sizes each astronaut will need, based on the spacesuit size they wore in training on the ground, and in some cases astronauts train in multiple sizes.
McClain trained in both a medium and a large on Earth. However, living in microgravity can change the size of your body! In fact, Anne McClain has grown two inches since she launched to the Space Station.
McClain realized that the medium she wore during the March 22 spacewalk was a better fit for her in space. She had planned to wear a large during the March 29 spacewalk.
In a tweet, McClain explained: “This decision was based on my recommendation. Leaders must make tough calls, and I am fortunate to work with a team who trusts my judgement. We must never accept a risk that can instead be mitigated. Safety of the crew and execution of the mission come first.”
To provide each astronaut the best fitting spacesuit during their spacewalks, Koch will wear the medium torso on March 29, and McClain will wear it again on April 8.
The spacesuit is a mini spaceship that keeps our astronauts alive while they are spacewalking!
Astronauts train several hours on Earth in the Neutral Buoyancy Lab for every hour they spend spacewalking. Spacewalks are the most physically demanding thing we ask astronauts to do, which is why an optimally fitted spacesuit is important to completing the assigned tasks and overall mission!
We do have enough torsos. The spacesuit takes into account more than 80 different body measurements to be configured for each astronaut. The suit has three sizes of upper torso, eight sizes of adjustable elbows, over 65 sizes of gloves, two sizes of adjustable waists, five sizes of adjustable knees and a vast array of padding options for almost every part of the body.
In space, we have two medium hard upper torsos, two larges and two extra larges; however, one of the mediums and one of the extra larges are spares that would require 12 hours of crew time for configuration.
Configuring the spare medium is a very methodical and meticulous process to ensure the intricate life support system — including the controls, seals, and hoses for the oxygen, water and power as well as the pressure garment components — are reassembled correctly with no chance of leaks.
Nothing is more important than the safety of our crew!
12 hours might not seem like a long time, but the space station is on a very busy operational schedule. An astronaut’s life in space is scheduled for activities in five minute increments. Their time is scheduled to conduct science experiments, maintain their spaceship and stay healthy (they exercise two hours a day to keep their bones and muscles strong!).
The teams don’t want to delay this spacewalk because two resupply spacecraft – Northrop Grumman Cygnus and SpaceX cargo Dragon – are scheduled to launch to the space station in the second half of April. That will keep the crew very busy for a while!
NASA does not make assignments based on gender.
The first female space shuttle commander, the first female space station commander and the first female spacewalker were all chosen because they the right individuals for the job, not because they were women. It is not unusual to change spacewalk assignments as lessons are learned during operations in space.
McClain became the 13th female spacewalker on March 22, and Koch will be the 14th this Friday – both coincidentally during Women’s History Month! Women also are filling two key roles in Mission Control: Mary Lawrence as the lead flight director and Jaclyn Kagey as the lead spacewalk officer.
An all-female spacewalk is inevitable! As the percentage of women who have become astronauts increases, we look forward to celebrating the first spacewalk performed by two women! McClain, Koch (and Hague!) are all part of the first astronaut class that was 50 percent women, and five of the 11 members of the 2017 astronaut candidate class are also women.
You can watch the upcoming spacewalk on March 29 at 6:30 ET, which is one in a series to upgrade the station’s power technology with new batteries that store power from the solar arrays for the station to use when it is in orbital night.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com