Say Hello To Spiral Galaxy NGC 1097 👋

Say Hello To Spiral Galaxy NGC 1097 👋

Say hello to spiral galaxy NGC 1097 👋

About 45 million light-years away, in another corner of the cosmos, lies spiral galaxy NGC 1097. Though this Hubble Space Telescope image zooms in toward the core, the galaxy’s vast spiral arms span over 100,000 light-years as they silently sweep through space. At the heart of this galaxy lurks a black hole that is about 100 million times as massive as the Sun.

The supermassive black hole is voraciously eating up surrounding matter, which forms a doughnut-shaped ring around it. Matter that’s pulled into the black hole releases powerful radiation, making the star-filled center of the galaxy even brighter. Hubble’s observations have led to the discovery that while the material that is drawn toward NGC 1097’s black hole may be doomed to die, new stars are bursting into life in the ring around it.

This sparkling spiral galaxy is especially interesting to both professional scientists and amateur astronomers. It is a popular target for supernova hunters ever since the galaxy experienced three supernovas in relatively rapid succession — just over a decade, between 1992 and 2003. Scientists are intrigued by the galaxy’s satellites — smaller “dwarf” galaxies that orbit NGC 1097 like moons. Studying this set of galaxies could reveal new information about how galaxies interact with each other and co-evolve.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

More Posts from Mousoudi20 and Others

5 years ago

I’m really intrigued about this shipping thing and who I would match haha...Can I have an Outer Banks ship? My icon is actually me! I’m a straight female, 5’5 with mid length brown hair and brown eyes. I love older music like 70s rock bands but also love pop/rock music for driving with the windows down like Taylor Swift or Avril Lavigne. I’m from South Carolina and I love Kayaking and Paddle Boarding I also like just reading a good book. The most important thing to me is a sense of adventure!

outer banks

I’m Really Intrigued About This Shipping Thing And Who I Would Match Haha...Can I Have An Outer Banks

i ship you with john b!

• you and john b go on adventures all the time. there isn’t a mountain or hiking trail you two haven’t gone on. you guys also sneak into a lot of abandoned places.

• he also would teach you how to surf. he’s not the best teacher, but you get the hang of it anyway.

• naps in the twinkie>

• him laying his head in your lap while you read

• i feel like he might listen to the same music you do

• screaming complicated by avril with the windows down and full volume

6 years ago

Computational modeling of fusion plasmas is very challenging: scales to be covered range from micrometers to meters and picoseconds to minutes. With largest supercomputers available, our understanding was pushed forward by modelling and still is.

#FusionFriday

(GIF: Waltz/Candy) https://t.co/hKdD5VGNNf

5 years ago

5 Out-of-this-world Facts About Our Iconic Vehicle Assembly Building!

image

The Vehicle Assembly Building, or VAB, at our Kennedy Space Center in Florida, is the only facility where assembly of a rocket occurred that carried humans beyond low-Earth orbit and on to the Moon. For 30 years, its facilities and assets were used during the Space Shuttle Program and are now available to commercial partners as part of our agency’s plan in support of a multi-user spaceport. To celebrate the VAB’s continued contribution to humanity’s space exploration endeavors, we’ve put together five out-of-this-world facts for you!

1. It’s one of the largest buildings in the world by area, the VAB covers eight acres, is 525 feet tall and 518 feet wide.

image

Aerial view of the Vehicle Assembly Building with a mobile launch tower atop a crawler transporter approaching the building. 

2. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, the largest rocket made by humans at the time.

image

An Apollo/Saturn V facilities Test Vehicle and Launch Umbilical Tower (LUT) atop a crawler-transporter move from the Vehicle Assembly Building (VAB) on the way to Pad A on May 25, 1966. 

3. The building is home to the largest American flag, a 209-foot-tall, 110-foot-wide star spangled banner painted on the side of the VAB.

image

Workers painting the Flag on the Vehicle Assembly Building on January 2, 2007.

4. The tallest portions of the VAB are its 4 high bays. Each has a 456-foot-high door. The doors are the largest in the world and take about 45 minutes to open or close completely.

image

A mobile launcher, atop crawler-transporter 2, begins the move into High Bay 3 at the Vehicle Assembly Building (VAB) on Sept. 8, 2018.

5. After spending more than 50 years supporting our human spaceflight programs, the VAB received its first commercial tenant – Northrop Grumman Corporation – on August 16, 2019!

image

A model of Northrop Grumman’s OmegA launch vehicle is flanked by the U.S. flag and a flag bearing the OmegA logo during a ribbon-cutting ceremony Aug. 16 in High Bay 2 of the Vehicle Assembly Building.

Whether the rockets and spacecraft are going into Earth orbit or being sent into deep space, the VAB will have the infrastructure to prepare them for their missions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

5 years ago

5 Ways the Moon Landing Changed Life on Earth

When Neil Armstrong took his first steps on the Moon 50 years ago, he famously said “that’s one small step for a man, one giant leap for mankind.” He was referring to the historic milestone of exploring beyond our own planet — but there’s also another way to think about that giant leap: the massive effort to develop technologies to safely reach, walk on the Moon and return home led to countless innovations that have improved life on Earth.

Armstrong took one small step on the lunar surface, but the Moon landing led to a giant leap forward in innovations for humanity.

Here are five examples of technology developed for the Apollo program that we’re still using today:

1. Food Safety Standards

As soon as we started planning to send astronauts into space, we faced the problem of what to feed them — and how to ensure the food was safe to eat. Can you imagine getting food poisoning on a spacecraft, hundreds of thousands of miles from home?

We teamed up with a familiar name in food production: the Pillsbury Company. The company soon realized that existing quality control methods were lacking. There was no way to be certain, without extensive testing that destroyed the sample, that the food was free of bacteria and toxins.

Pillsbury revamped its entire food-safety process, creating what became the Hazard Analysis and Critical Control Point system. Its aim was to prevent food safety problems from occurring, rather than catch them after the fact. They managed this by analyzing and controlling every link in the chain, from the raw materials to the processing equipment to the people handling the food.

Today, this is one of the space program’s most far-reaching spinoffs. Beyond keeping the astronaut food supply safe, the Hazard Analysis and Critical Point system has also been adopted around the world — and likely reduced the risk of bacteria and toxins in your local grocery store. 

image

2. Digital Controls for Air and Spacecraft

The Apollo spacecraft was revolutionary for many reasons. Did you know it was the first vehicle to be controlled by a digital computer? Instead of pushrods and cables that pilots manually adjusted to manipulate the spacecraft, Apollo’s computer sent signals to actuators at the flick of a switch.

Besides being physically lighter and less cumbersome, the switch to a digital control system enabled storing large quantities of data and programming maneuvers with complex software.

Before Apollo, there were no digital computers to control airplanes either. Working together with the Navy and Draper Laboratory, we adapted the Apollo digital flight computer to work on airplanes. Today, whatever airline you might be flying, the pilot is controlling it digitally, based on the technology first developed for the flight to the Moon.

image

3. Earthquake-ready Shock Absorbers

A shock absorber descended from Apollo-era dampers and computers saves lives by stabilizing buildings during earthquakes.

Apollo’s Saturn V rockets had to stay connected to the fueling tubes on the launchpad up to the very last second. That presented a challenge: how to safely move those tubes out of the way once liftoff began. Given how fast they were moving, how could we ensure they wouldn’t bounce back and smash into the vehicle?

We contracted with Taylor Devices, Inc. to develop dampers to cushion the shock, forcing the company to push conventional shock isolation technology to the limit.

Shortly after, we went back to the company for a hydraulics-based high-speed computer. For that challenge, the company came up with fluidic dampers—filled with compressible fluid—that worked even better. We later applied the same technology on the Space Shuttle’s launchpad.

The company has since adapted these fluidic dampers for buildings and bridges to help them survive earthquakes. Today, they are successfully protecting structures in some of the most quake-prone areas of the world, including Tokyo, San Francisco and Taiwan.

image

4. Insulation for Space

We’ve all seen runners draped in silvery “space blankets” at the end of marathons, but did you know the material, called radiant barrier insulation, was actually created for space?

Temperatures outside of Earth’s atmosphere can fluctuate widely, from hundreds of degrees below to hundreds above zero. To better protect our astronauts, during the Apollo program we invented a new kind of effective, lightweight insulation.

We developed a method of coating mylar with a thin layer of vaporized metal particles. The resulting material had the look and weight of thin cellophane packaging, but was extremely reflective—and pound-for-pound, better than anything else available.

Today the material is still used to protect astronauts, as well as sensitive electronics, in nearly all of our missions. But it has also found countless uses on the ground, from space blankets for athletes to energy-saving insulation for buildings. It also protects essential components of MRI machines used in medicine and much, much more.

image

Image courtesy of the U.S. Marines

5. Healthcare Monitors

Patients in hospitals are hooked up to sensors that send important health data to the nurse’s station and beyond — which means when an alarm goes off, the right people come running to help.

This technology saves lives every day. But before it reached the ICU, it was invented for something even more extraordinary: sending health data from space down to Earth.

When the Apollo astronauts flew to the Moon, they were hooked up to a system of sensors that sent real-time information on their blood pressure, body temperature, heart rate and more to a team on the ground.

The system was developed for us by Spacelabs Healthcare, which quickly adapted it for hospital monitoring. The company now has telemetric monitoring equipment in nearly every hospital around the world, and it is expanding further, so at-risk patients and their doctors can keep track of their health even outside the hospital.

image

Only a few people have ever walked on the Moon, but the benefits of the Apollo program for the rest of us continue to ripple widely.

In the years since, we have continued to create innovations that have saved lives, helped the environment, and advanced all kinds of technology.

Now we’re going forward to the Moon with the Artemis program and on to Mars — and building ever more cutting-edge technologies to get us there. As with the many spinoffs from the Apollo era, these innovations will transform our lives for generations to come.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago

Want to Send Your Art to the International Space Station?!

For children ages 4-12, we’re hosting an art contest! Get the details:

image
image
image
image
image

We are working with Boeing and SpaceX to build human spaceflight systems, like rockets and spacecraft, to take astronauts to the International Space Station. These companies will fly astronauts to orbit around Earth while we focus on plans to explore deeper into our solar system. 

image

Get out your art supplies and use your creative imagination to show us the present and future of traveling in space!

image

There are no grocery stores in space, but there may soon be farms. Very small farms that are important to a crew conducting a mission to deep space. That’s because our astronauts will need to grow some of their own food. Researchers on Earth and astronauts on the International Space Station are already showing what is needed to grow robust plants in orbit.

image

What would you take to space? Astronaut Suni Williams took a cutout of her dog, Gorbie, on her first mission to the International Space Station. 

image

Kids 4 to 12, draw what you would take and enter it in our Children’s Artwork Calendar contest! Your entry could be beamed to the space station!

image
image

Go to http://go.nasa.gov/2fvRLNf for more information about the competition’s themes, rules and deadlines plus the entry form. 

image
image

Get your parent’s permission, of course!

Email your entry form and drawing to us at: ksc-connect2ccp@mail.nasa.gov

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

6 years ago

An unwrapped port cell door. Its size? It's massive - over 4 m wide, almost 4 m high, 80 cm deep and 60 tonnes heavy. 46 of these nuclear confinement doors will sit at the far end of openings around the #tokamak. https://t.co/uZcVBic4l9 #fusionenergy #WeAreITER https://t.co/lFsznJEsMP

5 years ago

🔎 Lava Lake Discovery 

🌋 Raikoke Volcano Eruption

🔥 Uptick in Amazon Fire Activity 

2019 brought many memorable events on Planet Earth, and NASA satellites and astronauts captured a lot of the action! From new discoveries to tracking natural events and capturing amazing scenery, here are a few highlights from around the globe. 

Read more about the images in this video, here. 

6 years ago

Business talks also at the stand of the Chinese Domestic Agency. China's contributions concern many components including the magnet and power systems, the vacuum vessel blanket, the fuel cycle and diagnostics. #ITER #IBF19 #WeAreITER https://t.co/hhQJ1nsTdH

6 years ago

The scaffolding has come off the lower cylinder of the #ITER #cryostat. Clad in thin film it is now being scanned by metrologists for reverse engineering and will then be cocooned for storage until assembly. #fusionenergy #WeAreITER https://t.co/DOag9p1rPp https://t.co/xoi5GTq0Vc

6 years ago

The International Space Station Through the Eyes of Little Earth!

Currently, six humans are living and working on the International Space Station, which orbits 250 miles above our planet at 17,500mph. Accompanying their mission is a zero-g indicator, informally known as “Little Earth”. 

Greetings fellow Earthlings! Curious about my first week on the International Space Station? What does a normal day look like when you’re living and working hundreds of miles above Earth? Take a look at some photos from my first week, when I was still learning the ropes from my new roommates!

Welcome Ceremony

Talk about a warm welcome! I arrived on March 3, 2019 when the SpaceX Crew Dragon docked to the Space Station for the first time. This historic mission marked the first time a commercially built American spacecraft intended for human spaceflight docked to the orbital lab. Though un-crewed, Dragon was carrying two very important passengers – my space travel companion Ripley and myself, Astronaut Little Earth. During my three-day introduction to the station, two Expedition 59 astronauts, Anne McClain and David Saint-Jacques, taught me what it takes to be a Space Station crew member!

Earth Watching

image

First thing’s first – the VIEW. After the traditional hatch opening welcome ceremony, I was off to the Cupola Observational Module. Designed for the observation of operations outside the station, this module’s six side windows also provide spectacular views of our Mother Earth! My roommate Anne McClain introduced me to the beautiful vantage point of space. Clearly, I was a little star-struck.

Space Suit Sizing

image

Next, it was time to get to work – lending a hand with Anne McClain’s space suit sizing. Did you know you actually grow in zero gravity? Astronaut McClain has grown two inches on her current mission in space. Crew members must account for this change in growth to know if different components need to be switched out of their individual spacesuit for a better fit. When pressurized and filled with oxygen, the spacesuits become stiff objects around the astronauts inside, making it critical they fit comfortably. These spacesuits are essentially mini spacecraft that provide protection and a means of survival for the astronauts as they venture outside the space station and into the harsh environment of space.

Space Coffee!

image

One Café Latte, please! I was thrilled to find out that even in space, the morning begins with a pick me up. Due to microgravity, liquids tend to get sticky and cling to the wall of cups, making these plastic pouches and straws necessary for consumption. Astronauts in 2015 got an upgrade to their morning cup of joe thanks to SpaceX, Lavazza and the Italian Space Agency. Named the ISSpresso, a microgravity coffee maker has brought authentic Italian espresso with zero-G coffee cups onto the International Space Station.

Emergency Mask Donning

image

Fueled up and ready for the day, my next agenda item was emergency preparedness practice. There is no 9-1-1 in space, and three events that could pose a dangerous threat to the Space Station include a fire, a depressurization event or an ammonia breakout. Here, Canadian Astronaut David Saint-Jacques and I practiced emergency mask donning in the unlikely event of an ammonia leak into the station’s atmosphere.

Preventative Maintenance

image

From astronaut to astro-plumber, I traded my mask for goggles with Astronaut Anne McClain during a briefing on plumbing routine maintenance. Because the International Space Station never returns to Earth, the crew is trained to regularly inspect, replace and clean parts inside the station.

Daily Exercise

image

Talk about staying healthy! After a busy day, Astronaut McClain and I continued to hit the ground running, literally. Crew members are required to work out daily for about two hours to help keep their heart, bones and muscles strong in zero gravity. The harness McClain is wearing is very much like a backpacking harness, designed to evenly distribute weight across her upper body and is attached to a system of bungees and cords. Depending on the tension in these attachments, a specific load of pressure is applied to her body onto the machine.

Strength Training in Zero-G

image

Watch out, deadlift going on. Running isn’t the only gym exercise they have onboard; strength training is also incorporated into the daily exercise regime.

Robotics Operations: Canadarm2 

image

You can look, just don’t touch they told me. Whoops. This was a definite highlight, my Canadarm 2 briefing. That black nob by my hand is the translational hand controller. It operates the up and down function of the 57.7-foot-long robotic arm. The Canadarm2 lends a literal helping hand with many station functions, using a “hand” known as a Latching End Effector to perform tasks such as in orbit maintenance, moving supplies and performing “cosmic catches”.

Crew Group Dinner 

image

Whew, you work up a big appetite working on the Space Station. Ending the day, I was introduced to a crew favorite, group dinner! Astronauts and cosmonauts from around the world come together on the orbital lab and bring with them a variety of cultures and … food! Though each country is responsible for feeding its own members, when on board the astronauts can share as they please. A new friend of mine, Paxi from the European Space Agency, welcomed my visit and we split a delicious space-shrimp cocktail.

And that’s a wrap to a busy first week aboard the International Space Station! Learn more about what it means to live and work aboard the International Space Station, and click here to see if you have what it takes to become a NASA Astronaut. Until next time!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

  • transbordei-o
    transbordei-o liked this · 1 month ago
  • blacklicoriceaddict
    blacklicoriceaddict liked this · 4 months ago
  • soulofayoungman
    soulofayoungman liked this · 4 months ago
  • elbisreverri
    elbisreverri liked this · 11 months ago
  • ashleighxcx
    ashleighxcx reblogged this · 1 year ago
  • ashleighxcx
    ashleighxcx liked this · 1 year ago
  • ryn-tak
    ryn-tak liked this · 1 year ago
  • snowboarder524
    snowboarder524 liked this · 2 years ago
  • lizroadcap
    lizroadcap liked this · 2 years ago
  • alaskandreams
    alaskandreams liked this · 2 years ago
  • generable
    generable reblogged this · 2 years ago
  • spacedustandmoonflowers
    spacedustandmoonflowers reblogged this · 2 years ago
  • saltyspaghettio
    saltyspaghettio liked this · 2 years ago
  • atlantidasblog
    atlantidasblog liked this · 2 years ago
  • sara2476
    sara2476 liked this · 2 years ago
  • hauntinglover
    hauntinglover reblogged this · 2 years ago
  • extraterrestrialemon
    extraterrestrialemon reblogged this · 2 years ago
  • cristinaaaa
    cristinaaaa liked this · 2 years ago
  • less-than-fear
    less-than-fear reblogged this · 2 years ago
  • moiona
    moiona reblogged this · 2 years ago
  • xiothan
    xiothan liked this · 2 years ago
  • visrightfist
    visrightfist liked this · 2 years ago
  • justanotherblonde23
    justanotherblonde23 reblogged this · 2 years ago
  • proevil
    proevil reblogged this · 2 years ago
  • imatinyrobot
    imatinyrobot liked this · 3 years ago
  • isla-vic
    isla-vic liked this · 3 years ago
  • estousozinho
    estousozinho liked this · 3 years ago
  • superlucyjin
    superlucyjin reblogged this · 3 years ago
  • jollydigitalartphotographycowboy
    jollydigitalartphotographycowboy liked this · 3 years ago
  • qualityinternetphilosopher
    qualityinternetphilosopher liked this · 3 years ago
  • wakayume
    wakayume liked this · 3 years ago
  • autolysia
    autolysia liked this · 3 years ago
  • leticiiasilveiraa
    leticiiasilveiraa reblogged this · 4 years ago
  • leticiiasilveiraa
    leticiiasilveiraa liked this · 4 years ago
  • mod19ctbt
    mod19ctbt liked this · 4 years ago
  • ihaveneverbeenasleep
    ihaveneverbeenasleep liked this · 4 years ago
  • sergiomigcampos
    sergiomigcampos liked this · 4 years ago
  • brandyreborn
    brandyreborn liked this · 4 years ago
  • farawayleaf
    farawayleaf liked this · 4 years ago
  • bl0ndd
    bl0ndd liked this · 4 years ago
  • flor-noturna
    flor-noturna reblogged this · 4 years ago
  • cancekisenislakkelebek
    cancekisenislakkelebek reblogged this · 4 years ago
  • cancekisenislakkelebek
    cancekisenislakkelebek liked this · 4 years ago
mousoudi20 - Pogue Life
Pogue Life

82 posts

Explore Tumblr Blog
Search Through Tumblr Tags