Hadas Cohen

Hadas Cohen
Hadas Cohen
Hadas Cohen

Hadas Cohen

More Posts from Thehkr and Others

3 years ago
Spread Your Cosmic Wings 🦋

Spread your cosmic wings 🦋

The Butterfly Nebula, created by a dying star, was captured by the Hubble Space Telescope in this spectacular image. Observations were taken over a more complete spectrum of light, helping researchers better understand the “wings'' of gas bursting out from its center. The nebula’s dying central star has become exceptionally hot, shining ultraviolet light brightly over the butterfly’s wings and causing the gas to glow.

Learn more about Hubble’s celebration of Nebula November and see new nebula images, here.

You can also keep up with Hubble on Twitter, Instagram, Facebook, and Flickr!

Image credits: NASA, ESA, and J. Kastner (RIT)

4 years ago

Sea Level Rise is on the Rise

As our planet warms, sea levels are rising around the world – and are doing so at an accelerating rate. Currently, global sea level is rising about an eighth of an inch every year.

image

That may seem insignificant, but it’s 30% more than when NASA launched its first satellite mission to measure ocean heights in 1992 – less than 30 years ago. And people already feel the impacts, as seemingly small increments of sea level rise become big problems along coastlines worldwide.

image

Higher global temperatures cause our seas to rise, but how? And why are seas rising at a faster and faster rate? There are two main reasons: melting ice and warming waters.

 The Ice We See Is Getting Pretty Thin

About two-thirds of global sea level rise comes from melting glaciers and ice sheets, the vast expanses of ice that cover Antarctica and Greenland. In Greenland, most of that ice melt is caused by warmer air temperatures that melt the upper surface of ice sheets, and when giant chunks of ice crack off of the ends of glaciers, adding to the ocean.

image

In Antarctica – where temperatures stay low year-round – most of the ice loss happens at the edges of glaciers. Warmer ocean water and warmer air meet at the glaciers’ edges, eating away at the floating ice sheets there.

image

NASA can measure these changes from space. With data from the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, scientists can measure the height of ice sheets to within a fraction of an inch. Since 2006, an average of 318 gigatons of ice per year has melted from Greenland and Antarctica’s ice sheets. To get a sense of how big that is: just one gigaton is enough to cover New York City’s Central Park in ice 1,000 feet deep – almost as tall as the Chrysler Building.

With the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission – a partnership with the German Research Centre for Geosciences – scientists can calculate the mass of ice lost from these vast expanses across Greenland and Antarctica.

image

It’s not just glaciers in Antarctica and Greenland that are melting, though. Nearly all glaciers have been melting in the last decade, including those in Alaska, High Mountain Asia, South America, and the Canadian Arctic. Because these smaller glaciers are melting quickly, they contribute about the same amount to sea level rise as meltwater from massive ice sheets.

image

The Water’s Getting Warm

As seawater warms, it takes up more space. When water molecules get warmer, the atoms in those molecules vibrate faster, expanding the volume they take up. This phenomenon is called thermal expansion. It’s an incredibly tiny change in the size of a single water molecule, but added across all the water molecules in all of Earth’s oceans – a single drop contains well over a billion billion molecules – it accounts for about a third of global sea level rise.

image

So Much to See

While sea level is rising globally, it’s not the same across the planet. Sea levels are rising about an eighth of an inch per year on average worldwide. But some areas may see triple that rate, some may not observe any changes, and some may even experience a drop in sea level. These differences are due to ocean currents, mixing, upwelling of cold water from the deep ocean, winds, movements of heat and freshwater, and Earth’s gravitational pull moving water around. When ice melts from Greenland, for example, the drop in mass decreases the gravitational pull from the ice sheet, causing water to slosh to the shores of South America.

That’s where our view from space comes in. We’re launching Sentinel-6 Michael Freilich, an international partnership satellite, to continue our decades-long record of global sea level rise.

image
4 years ago

Oddly Satisfying #NASAMoonKits 🌙

What would you take with you to the Moon? 🧳

image

We’re getting ready for our Green Run Hot Fire test, which will fire all four engines of the rocket that will be used for our Artemis I mission. This test will ensure the Space Launch System rocket is ready for the first and future missions beyond Earth’s orbit, putting us one step closer to landing the first woman and the next man on the Moon!

In celebration of this important milestone, we’ve been asking everyone (yeah, you there!) to dust off your suitcase, get creative, and show us what you would take if you were heading to the Moon!

Take a moment to peruse these #oddlysatisfying #NASAMoonKits submitted by people like you, and let them inspire you to lay out your own masterpiece. Post a picture of what you’d pack for the moon using the hashtag #NASAMoonKit for a chance to be shared by us! ⁣

1. @alexandra4astronaut

image

A stunning #NASAMoonKit in blue. 💙

2.@timmerman.jess

image

Looks like a little friend is hoping to catch a ride with this #NASAMoonKit. 🐶

3. @guido_aerus_lombardo

image

A #NASAMoonKit fit for an explorer. 🧭

4. @melli.jp

image

Shout out to the monochrome #NASAMoonKit enthusiasts! 🖤

5. @mycactusdress

image

This #NASAMoonKit is thoughtfully laid out by a true fan. 📚

6. Mar Christian V. Cruz

image

This geologist’s #NASAMoonKit rocks. ⛏️

7. Nelli

image

Beauty in simple #NASAMoonKits. ✨

8. @urbanxkoi

image

This #NASAMoonKit successfully fits into our Expert Mode — a volume of 5” by 8” by 2” (12.7 cm x 20.32 cm x 5.08 cm). The Expert Mode dimensions are based on the amount of space astronauts are allowed when they travel to the International Space Station!

9. PWR Aerospace

image

Nothing like a cozy #NASAMoonKit. 🧦

10. LEGO

image

This #NASAMoonKit is clearly for the builder-types! 🧸

How to Show Us What’s In Your #NASAMoonKit:    

There are four social media platforms that you can use to submit your work:

Instagram: Use the Instagram app to upload your photo or video, and in the description include #NASAMoonKit  

Twitter: Share your image on Twitter and include #NASAMoonKit in the tweet  

Facebook: Share your image on Facebook and include #NASAMoonKit in the post  

Tumblr: Share your image in Tumblr and include #NASAMoonKit in the tags

If a #NASAMoonKit post catches our eye, we may share your post on our NASA social media accounts or share it on the Green Run broadcast! 

Click here for #NASAMoonKit Terms and Conditions.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

5 years ago

More than Just Dust in the Wind

More Than Just Dust In The Wind

From space, we can see a swirling brown mass making its way across the Atlantic – dust from the Sahara Desert – the largest hot desert in the world. It’s a normal phenomenon. Every year, winds carry millions of tons of dust from North Africa, usually during spring and summer in the Northern Hemisphere.

More Than Just Dust In The Wind

June 2020 has seen a massive plume of dust crossing the ocean. It’s so large it’s visible from one million miles away in space.

More Than Just Dust In The Wind

Dust clouds this large can affect air quality in regions where the dust arrives. The particles can also scatter the Sun’s light, making sunrises and sunsets more vibrant.

More Than Just Dust In The Wind

Dust particles in the air are also known as aerosols. We can measure aerosols, including dust, sea salt and smoke, from satellites and also use computer models to study how they move with the wind.

More Than Just Dust In The Wind

Following the transport of dust from space shows us how one of the driest places on Earth plays a role in fertilizing the Amazon rainforest. There are minerals in Saharan dust, like phosphorous, that exist in commercial fertilizers, helping seed the rainforest.

More Than Just Dust In The Wind

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com 

6 years ago

It’s sad when one has to paint a dark picture of another in order to paint a “perfect” picture of themselves.

Unknown (via quotemadness)

4 years ago

Being a good friend doesn’t mean you always have all the right words to say. Sometimes it means you just know when to be a good listener.

Katrina Mayer (via quotemadness)

1 year ago
A color GIF looking down at the Ingenuity Mars Helicopter as it begins to spin its two counter-rotating blades. The small craft sits on red, rocky Martian terrain. There is red dust on the helicopter’s solar panel. Credit: NASA/JPL-Caltech/ASU

What We Learned from Flying a Helicopter on Mars

A color GIF of NASA's Ingenuity Mars Helicopter as it hovers slowly above the dusty, rocky Martian landscape. Credit: NASA/JPL-Caltech/ASU/MSSS

The Ingenuity Mars Helicopter made history – not only as the first aircraft to perform powered, controlled flight on another world – but also for exceeding expectations, pushing the limits, and setting the stage for future NASA aerial exploration of other worlds.

Built as a technology demonstration designed to perform up to five experimental test flights over 30 days, Ingenuity performed flight operations from the Martian surface for almost three years. The helicopter ended its mission on Jan. 25, 2024, after sustaining damage to its rotor blades during its 72nd flight.

So, what did we learn from this small but mighty helicopter?

We can fly rotorcraft in the thin atmosphere of other planets.

Ingenuity proved that powered, controlled flight is possible on other worlds when it took to the Martian skies for the first time on April 19, 2021.

Flying on planets like Mars is no easy feat: The Red Planet has a significantly lower gravity – one-third that of Earth’s – and an extremely thin atmosphere, with only 1% the pressure at the surface compared to our planet. This means there are relatively few air molecules with which Ingenuity’s two 4-foot-wide (1.2-meter-wide) rotor blades can interact to achieve flight.

Ingenuity performed several flights dedicated to understanding key aerodynamic effects and how they interact with the structure and control system of the helicopter, providing us with a treasure-trove of data on how aircraft fly in the Martian atmosphere.

Now, we can use this knowledge to directly improve performance and reduce risk on future planetary aerial vehicles.

NASA’s Ingenuity Mars Helicopter took this black-and-white photo while hovering over the Martian surface on April 19, 2021, during the first instance of powered, controlled flight on another planet. It used its navigation camera, which is mounted in its fuselage and pointed directly downward to track the ground during flight. The image shows the shadow of the Ingenuity Mars Helicopter on the surface of Mars. The black shadow of the helicopter is very crisp and clear against the white backdrop of the Martian sandy surface. Its wing-shaped rotors jut out from the sides of its square body, and from each corner is a thin leg that has a small ball shape at the end. Credit: NASA/JPL-Caltech

Creative solutions and “ingenuity” kept the helicopter flying longer than expected.

Over an extended mission that lasted for almost 1,000 Martian days (more than 33 times longer than originally planned), Ingenuity was upgraded with the ability to autonomously choose landing sites in treacherous terrain, dealt with a dead sensor, dusted itself off after dust storms, operated from 48 different airfields, performed three emergency landings, and survived a frigid Martian winter.

Fun fact: To keep costs low, the helicopter contained many off-the-shelf-commercial parts from the smartphone industry - parts that had never been tested in deep space. Those parts also surpassed expectations, proving durable throughout Ingenuity’s extended mission, and can inform future budget-conscious hardware solutions.

A split screen image. The left side of the image shows a close-up photo of an Ingenuity team member inspecting NASA's Ingenuity Mars Helicopter while it was still here on Earth. Across the image are bold white letters that spell out "DREAM." The right side of the image shows a close-up photo of Ingenuity after it landed on Mars. The helicopter sits on the dusty, rocky surface of the planet. Across the image are bold white letters that spell out "REALITY." Credit:NASA/JPL-Caltech

There is value in adding an aerial dimension to interplanetary surface missions.

Ingenuity traveled to Mars on the belly of the Perseverance rover, which served as the communications relay for Ingenuity and, therefore, was its constant companion. The helicopter also proved itself a helpful scout to the rover.

After its initial five flights in 2021, Ingenuity transitioned to an “operations demonstration,” serving as Perseverance’s eyes in the sky as it scouted science targets, potential rover routes, and inaccessible features, while also capturing stereo images for digital elevation maps.

Airborne assets like Ingenuity unlock a new dimension of exploration on Mars that we did not yet have – providing more pixels per meter of resolution for imaging than an orbiter and exploring locations a rover cannot reach.

A color-animated image sequence of NASA’s Mars Perseverance rover shows the vehicle on Mars's red, dusty surface. The six-wheeled rover’s camera “head” faces the viewer and then turns to the left, where, on the ground, sits the small Ingenuity Mars Helicopter. Credit: NASA/JPL-Caltech/MSSS

Tech demos can pay off big time.

Ingenuity was flown as a technology demonstration payload on the Mars 2020 mission, and was a high risk, high reward, low-cost endeavor that paid off big. The data collected by the helicopter will be analyzed for years to come and will benefit future Mars and other planetary missions.

Just as the Sojourner rover led to the MER-class (Spirit and Opportunity) rovers, and the MSL-class (Curiosity and Perseverance) rovers, the team believes Ingenuity’s success will lead to future fleets of aircraft at Mars.

In general, NASA’s Technology Demonstration Missions test and advance new technologies, and then transition those capabilities to NASA missions, industry, and other government agencies. Chosen technologies are thoroughly ground- and flight-tested in relevant operating environments — reducing risks to future flight missions, gaining operational heritage and continuing NASA’s long history as a technological leader.

You can fall in love with robots on another planet.

Following in the tracks of beloved Martian rovers, the Ingenuity Mars Helicopter built up a worldwide fanbase. The Ingenuity team and public awaited every single flight with anticipation, awe, humor, and hope.

Check out #ThanksIngenuity on social media to see what’s been said about the helicopter’s accomplishments.

Learn more about Ingenuity’s accomplishments here. And make sure to follow us on Tumblr for your regular dose of space!

4 years ago

Setting the Standards for Unmanned Aircraft

From advanced wing designs, through the hypersonic frontier, and onward into the era of composite structures, electronic flight controls, and energy efficient flight, our engineers and researchers have led the way in virtually every aeronautic development. And since 2011, aeronautical innovators from around the country have been working on our Unmanned Aircraft Systems integration in the National Airspace System, or UAS in the NAS, project.  

image

This project was a new type of undertaking that worked to identify, develop, and test the technologies and procedures that will make it possible for unmanned aircraft systems to have routine access to airspace occupied by human piloted aircraft. Since the start, the goal of this unified team was to provide vital research findings through simulations and flight tests to support the development and validation of detect and avoid and command and control technologies necessary for integrating UAS into the NAS.  

image

That interest moved into full-scale testing and evaluation to determine how to best integrate unmanned vehicles into the national airspace and how to come up with standards moving forward. Normally, 44,000 flights safely take off and land here in the U.S., totaling more than 16 million flights per year. With the inclusion of millions of new types of unmanned aircraft, this integration needs to be seamless in order to keep the flying public safe.

image

Working hand-in-hand, teams collaborated to better understand how these UAS’s would travel in the national airspace by using NASA-developed software in combination with flight tests. Much of this work is centered squarely on technology called detect and avoid.  One of the primary safety concerns with these new systems is the inability of remote operators to see and avoid other aircraft.  Because unmanned aircraft literally do not have a pilot on board, we have developed concepts allowing safe operation within the national airspace.  

image

In order to better understand how all the systems work together, our team flew a series of tests to gather data to inform the development of minimum operational performance standards for detect and avoid alerting guidance. Over the course of this testing, we gathered an enormous amount of data allowing safe integration for unmanned aircraft into the national airspace. As unmanned aircraft are becoming more ubiquitous in our world - safety, reliability, and proven research must coexist.

image

Every day new use case scenarios and research opportunities arise based around the hard work accomplished by this incredible workforce. Only time will tell how these new technologies and innovations will shape our world.

image

Want to learn the many ways that NASA is with you when you fly? Visit nasa.gov/aeronautics.



Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago

The ranks of America’s Astronaut Corps grew by 11 today!

After completing more than two years of basic training, our graduating class of astronauts is eligible for spaceflight. Assignments include the International Space Station, Artemis missions to the Moon, and ultimately, missions to Mars.

The class includes 11 astronauts, selected in 2017 from a record-setting pool of more than 18,000 applicants. This was more than double the previous record of 8,000 applicants set in 1978.

Meet the graduates:

Kayla Barron

image

“If you don’t love what you’re doing, you’re not going to be good at it. I think it’s a combination of finding things that you really love that will also be really challenging and will force you to grow along the way.”

This Washington native graduated from the U.S. Naval Academy with a bachelor’s degree in systems engineering. As a Gates Cambridge Scholar, which offers students an opportunity to pursue graduate study in the field of their choice at the University of Cambridge. Barron earned a master’s degree in nuclear engineering.

As a Submarine Warfare Officer, Barron was part of the first class of women commissioned into the submarine community, completing three strategic deterrent patrols aboard the USS Maine.

Zena Cardman

image

“Every STEM opportunity that I have ever gone down is because of some mentor who inspired me or some student who was ahead of me in school who inspired me.”

Zena Cardman is a native of Virginia and completed a bachelor’s degree in biology and master’s degree in marine sciences at The University of North Carolina, Chapel Hill. Her research has focused on microorganisms in subsurface environments, ranging from caves to deep sea sediments.

An intrepid explorer, Cardman’s field experience includes multiple Antarctic expeditions, work aboard research vessels as both scientist and crew, and NASA analog missions in British Columbia, Idaho, and Hawaii.

Raja Chari

image

“I grew up with the mentality that education is truly a gift not to be taken for granted.”

This Iowa native graduated from the U.S. Air Force Academy in 1999 with bachelor’s degrees in astronautical engineering and engineering science. He continued on to earn a master’s degree in aeronautics and astronautics from Massachusetts Institute of Technology (MIT) and graduated from the U.S. Naval Test Pilot School.

Chari served as the Commander of the 461st Flight Test Squadron and the Director of the F-35 Integrated Test Force. He has accumulated more than 2,000 hours of flight time in the F-35, F-15, F-16 and F-18 including F-15E combat missions in Operation Iraqi Freedom.

Matthew Dominick

image

“I get to work with incredible people that want to solve problems and are passionate about it. I really want to contribute to the world and this is how I want to do it.”

This Colorado native earned a bachelor’s degree in electrical engineering from the University of San Diego and a master’s degree in systems engineering from the Naval Postgraduate School. He also graduated from U.S. Naval Test Pilot School.

Dominick served on the USS Ronald Reagan as department head for Strike Fighter Squadron 115. He has more than 1,600 hours of flight time in 28 aircraft, 400 carrier-arrested landings and 61 combat missions.

Bob Hines

image

“As you get older, other things become important to you, like being a part of something that’s bigger than yourself. This human endeavor of exploration is something that’s really exciting.”

Bob Hines is a Pennsylvania native and earned a bachelor’s degree in aerospace engineering from Boston University. He is a graduate of the U.S. Air Force Test Pilot School, where he earned a master’s degree in flight test engineering. He continued on to earn a master’s degree in aerospace engineering from the University of Alabama.

Hines served in the U.S. Air Force and Air Force Reserves for 18 years. He also served as a research pilot at our Johnson Space Center. He has accumulated more than 3,500 hours of flight time in 41 different types of aircraft and has flown 76 combat missions in support of contingency operations around the world.

Warren Hoburg

image

“It was back in high school that I realized that I was really interested in engineering. I always liked taking things apart and understanding how things work and then I also really enjoy solving problems.”

Nicknamed “Woody”, this Pennsylvania native earned a bachelor’s degree in aeronautics and astronautics from MIT and a doctorate in electrical engineering and computer science from the University of California, Berkeley.

Hoburg was leading a research group at MIT at the time of his selection and is a two-time recipient of the AIAA Aeronautics and Astronautics Teaching Award in recognition of outstanding teaching.

Dr. Jonny Kim

image

“I fundamentally believed in the NASA mission of advancing our space frontier, all while developing innovation and new technologies that would benefit all of humankind.”

This California native trained and operated as a Navy SEAL, completing more than 100 combat operations and earning a Silver Star and Bronze Star with Combat “V”. Afterward, he went on to complete a degree in mathematics at the University of San Diego and a doctorate of medicine at Harvard Medical School.

Kim was a resident physician in emergency medicine with Partners Healthcare at Massachusetts General Hospital.

Jasmin Moghbeli

image

“Surround yourself with good people that have the characteristics that you want to grow in yourself. I think if you surround yourself with people like that you kind of bring each other up to a higher and higher level as you go.”

Jasmin Moghbeli, a U.S. Marine Corps major, considers Baldwin, New York, her hometown. She earned a bachelor’s degree in aerospace engineering with information technology at MIT, followed by a master’s degree in aerospace engineering from the Naval Postgraduate School.

She is a distinguished graduate of the U.S. Naval Test Pilot School and has accumulated more than 1,600 hours of flight time and 150 combat missions.

Loral O’Hara

image

“I’m one of those people who have wanted to be an astronaut since I was a little kid, and I think that came from an early obsession with flying – birds, airplanes, rockets.”

This Houston native earned a bachelor’s degree in aerospace engineering at the University of Kansas and a Master of Science degree in aeronautics and astronautics from Purdue University. As a student, she participated in multiple NASA internship programs, including the Reduced Gravity Student Flight Opportunities Program, the NASA Academy at Goddard Space Flight Center, and the internship program at the Jet Propulsion Laboratory.

O’Hara was a research engineer at Woods Hole Oceanographic Institution, where she worked on the engineering, test and operations of deep-ocean research submersibles and robots. She is also a private pilot and certified EMT and wilderness first responder.

Dr. Frank Rubio

image

“I just figured it was time to take the plunge and try it. And so, I did and beyond all dreams, it came true.” 

Dr. Francisco “Frank” Rubio, a U.S. Army lieutenant colonel, is originally from Miami. He earned a bachelor’s degree in international relations from the U.S. Military Academy and earned a doctorate of medicine from the Uniformed Services University of the Health Sciences. 

Rubio served as a UH-60 Blackhawk helicopter pilot and flew more than 1,100 hours, including more than 600 hours of combat and imminent danger time during deployments to Bosnia, Afghanistan, and Iraq. He is also a board certified family physician and flight surgeon.

Jessica Watkins

image

“I’ve always been interested in exploring space. What’s out there and how can we as humans reach those outer stars and how can we learn more information about who we are through that process.”

This Colorado native earned a bachelor’s degree in geological and environmental sciences at Stanford University, and a doctorate in geology from the University of California, Los Angeles. Watkins has worked at Ames Research Center and the Jet Propulsion Laboratory.

Watkins was a postdoctoral fellow at the California Institute of Technology, where she collaborated on the Mars Curiosity rover, participating in daily planning of rover activities and investigating the geologic history of the Red Planet.

Learn more about the new space heroes right here: https://www.nasa.gov/newastronauts

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

5 years ago
thehkr - 無標題
  • cf8uenxm
    cf8uenxm liked this · 6 months ago
  • nearlyb
    nearlyb liked this · 7 months ago
  • txrinit
    txrinit liked this · 10 months ago
  • scrumptiouskingdompuppy
    scrumptiouskingdompuppy liked this · 1 year ago
  • lookin4sexy
    lookin4sexy liked this · 1 year ago
  • mister-stealyourgirl
    mister-stealyourgirl liked this · 2 years ago
  • fjestra
    fjestra liked this · 2 years ago
  • talldrinkofaqua
    talldrinkofaqua liked this · 2 years ago
  • mpg429
    mpg429 liked this · 2 years ago
  • stretch72love
    stretch72love liked this · 2 years ago
  • artur135
    artur135 liked this · 2 years ago
  • bigjohn36
    bigjohn36 liked this · 3 years ago
  • blondebomber81
    blondebomber81 liked this · 3 years ago
  • intangible-1
    intangible-1 liked this · 3 years ago
  • great7418
    great7418 liked this · 3 years ago
  • peanutluckie
    peanutluckie liked this · 3 years ago
  • willholtz
    willholtz liked this · 3 years ago
thehkr - 無標題
無標題

122 posts

Explore Tumblr Blog
Search Through Tumblr Tags