Motivations Are Likely To Be Multifactorial And May Be Influenced By Individual Or Organizational Biases

Motivations Are Likely To Be Multifactorial And May Be Influenced By Individual Or Organizational Biases

Motivations are likely to be multifactorial and may be influenced by individual or organizational biases and competing interests.

An additional contributing factor is that individuals may be motivated to share information that they perceive to be both accurate and of social value.

More Posts from Thehkr and Others

6 years ago

NASA Tech Launching on the Falcon Heavy

Later this month, a SpaceX Falcon Heavy rocket will take to the skies for the third time to launch the Department of Defense’s Space Test Program-2 (STP-2) mission. Several exciting, one-of-a-kind NASA technology and science payloads are among the two-dozen spacecraft aboard.

image

First, let’s talk about that Falcon Heavy rocket. Its 27 engines generate thrust at liftoff equal to that of approximately 18 airplanes, and it can lift over 140,000 pounds.

image

Managed by the U.S. Air Force Space and Missile Systems Center, STP-2 is the first government-contracted Falcon Heavy launch. It will reuse the two side boosters recovered after the April flight. SpaceX describes it as one of the most challenging launches in the company’s history.

It’s a big deal to us at NASA because we’re launching some pretty cool technologies. The tech will support our future exploration plans by helping improve future spacecraft design and performance. Here’s a bit about each:

Deep Space Atomic Clock

Time is the heartbeat of space navigation. Today, we navigate in deep space by using giant antennas on Earth to send signals to spacecraft, which then send those signals back to Earth. Atomic clocks on Earth measure the time it takes a signal to make this two-way journey. Only then can human navigators on Earth use large antennas to tell the spacecraft where it is and where to go.

Our Jet Propulsion Laboratory has been perfecting an atomic clock fit for exploration missions. The Deep Space Atomic Clock is the first atomic clock designed to fly on a spacecraft destined for beyond Earth’s orbit. The timepiece is lighter and smaller—no larger than a toaster oven—than its refrigerator-sized, Earthly counterparts.

image

This miniaturized clock could enable one-way navigation: a spacecraft receives a signal from Earth and can determine its location immediately using its own, built-in navigation system. Even smaller versions of the clock are being investigated right now that could be used for the growing number of small to mid-size satellites. As we go forward to the Moon with the Artemis program, precise measurements of time are key to mission success.

image

The Deep Space Atomic Clock is the primary payload onboard the General Atomics Electromagnetic Systems Orbital Test Bed satellite and will perform a year-long demonstration in space.

Enhanced Tandem Beacon Experiment (E-TBEx)

Two tiny satellites will study how signals can be muddled as they travel through hard-to-predict bubbles in the upper atmosphere. Signals sent from satellites down to Earth (and vice versa) can be disrupted by structured bubbles that sometimes form in Earth’s upper atmosphere. Because this region is affected both by weather on Earth and conditions in space, it’s hard to predict just when these bubbles will form or how they’ll mess with signals.

image

The E-TBEx CubeSats (short for Enhanced Tandem Beacon Experiment) will try to shed some light on that question. As these little satellites fly around Earth, they’ll send radio signals (like the ones used by GPS) to receiving stations on the ground. Scientists will be able to look at the signals received and see if they were jumbled as they traveled through the upper atmosphere down to Earth — which will help us track when these bubbles are forming and how much they’re interfering with our signals.

Green Propellant Infusion Mission (GPIM)

For decades, we have relied on a highly toxic spacecraft fuel called hydrazine. The Green Propellant Infusion Mission (GPIM) will lay the foundation to replace conventional chemical propulsion systems with a safer and more efficient alternative for next-generation spacecraft.

GPIM will demonstrate a new propellant in space for the first time. Concocted by the U.S. Air Force Research Laboratory, this innovative, “green” fuel—which actually has more of a peach hue—is expected to improve overall spacecraft performance due to its higher density, increased thrust and lower freezing point in comparison with hydrazine.

image

GPIM’s propulsion system, developed by Aerojet Rocketdyne, consists of new compatible tanks, valves and thrusters. During the two-month-long demonstration on a Ball Aerospace spacecraft, engineers will conduct orbital maneuvers to demonstrate the performance of the propellant and propulsion system.

image

Space Environment Testbeds (SET)

It’s not easy being a spacecraft; invisible, energetic particles zip throughout space — and while there are so few that space is considered a vacuum, what’s there still packs a punch. Tiny particles — like those seen here impacting a detector on a Sun-studying spacecraft — can wreak havoc with the electronics we send up into space.

image

Space Environment Testbeds — or SET, for short — is a mission to study space radiation and how it affects spacecraft and electronics in orbit. What looks like snow flurries in these animated images, for example, is actually a solar radiation storm of incredibly fast particles, unleashed by a solar eruption. Energetic particles from the Sun or deep space can spark memory damage or computer upsets on spacecraft, and over time, degrade hardware.

By studying radiation effects and different methods to protect satellites, SET will help future missions improve spacecraft design, engineering and operations.

Follow @NASA_Technology and @NASASun on Twitter for news about the STP-2 launch and our missions aboard.

Check out www.nasa.gov/spacex to stay up-to-date on the launch day and time. Don’t forget to tune into our launch coverage, scheduled to start about 30 minutes before liftoff!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

6 years ago

It’s sad when one has to paint a dark picture of another in order to paint a “perfect” picture of themselves.

Unknown (via quotemadness)

4 years ago

Earth Facts that Live Rent-Free in Our Heads

Earth is a big weird planet. With so much going on, it’s easy to forget some of the many, many processes happening here. But at the same time, some stuff is so unexpected and just plain strange that it’s impossible to forget. We asked around and found out lots of people here at NASA have this problem.

image

Here are some facts about Earth that live rent free in our heads:

Earth has a solid inner core that is almost as hot as the surface of the Sun. Earth’s core gets as high as 9,800 degrees Fahrenheit, while the surface of the Sun is about 10,000 degrees Fahrenheit.

image

Dust from the Sahara fertilizes the Amazon rainforest. 27.7 million tons blow all the way across the Atlantic Ocean to the rainforest each year, where it brings phosphorus – a nutrient plants need to grow.

image

Ice in Antarctica looks solid and still, but it’s actually flowing – in some places it flows so fast that scientific instruments can move as much as a kilometer (more than half a mile!) a year.

image

Speaking of Antarctica: Ice shelves (the floating part of ice sheets) can be as big as Texas. Because they float, they rise and fall with the tide. So floating ice as big as Texas, attached to the Antarctic Ice Sheet, can rise and fall up to ~26 feet!

image

Melting ice on land makes its way to the ocean. As polar glaciers melt, the water sloshes to the equator, and which can actually slow the spin of Earth.

image

Even though it looks it, the ocean isn’t level. The surface has peaks and valleys and varies due to changes in height of the land below, winds, temperature, saltiness, atmospheric pressure, ocean circulation, and more.

image

Earth isn’t the only mind-blowing place out there. From here, we look out into the rest of the universe, full of weird planets and galaxies that surprise us.

image

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

4 years ago

Laying the Groundwork for a New Generation of Commercial Supersonic Aircraft

Cabin crew, prepare for takeoff. Engines roar; speed increases. You sip a cold beverage as the aircraft accelerates quietly past Mach 1 or around 600 mph. There’s no indication you’re flying over land faster than the speed of sound except when you glance at your watch upon arrival and see you’ve reached your destination in half the time. You leisurely walk off the plane with ample time to explore, finish a final report or visit a familiar face. This reality is closer than you think.

image

We’re on a mission to help you get to where you want to go in half the time. Using our single-pilot X-59 Quiet SuperSonic Technology (QueSST) research aircraft, we will provide rule-makers the data needed to lift current bans on faster-than-sound air travel over land and help enable a new generation of commercial supersonic aircraft.

image

The X-59 QueSST is unique in shape. Each element of the aircraft’s design will help reduce a loud sonic boom, typically produced by conventional supersonic aircraft, to a gentle sonic thump, making it quieter for people on the ground. To prove the quiet technology works, we will fly the X-59 over select U.S. communities to gauge the public’s response to the sound.

image

We are working with Lockheed Martin in Palmdale, California, to manufacture the X-59 and are making significant progress, despite the pandemic.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

We finished the majority of work on the wing and closed its interior, marking the halfway point on construction of the aircraft. 

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

The X-59 team at Lockheed Martin completed the final touches by fastening skins to the wing. A special sealant is applied so that fuel can be carried in the wings of the aircraft.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

Moving at a steady pace, technicians continue to work on many parts of the aircraft simultaneously. The forebody section of the aircraft will carry the pilot and all the avionics needed to fly the aircraft.

image

Because of the X-59’s long nose, the pilot will rely on an eXternal Vision System (XVS), rather than a window, for forward-facing visibility. The XVS will display fused images from an advanced computing system and cameras mounted on the upper and lower part of the aircraft’s nose.

image

The aft part of the aircraft will hold an F414 GE engine and other critical systems. Unlike typical aircraft, the engine inlet will be located on the upper surface of the X-59 and is one of many features that will help reduce the noise heard on the ground.

Laying The Groundwork For A New Generation Of Commercial Supersonic Aircraft

Over the next several months, the team will merge all three sections together. After final assembly in 2021, the X-59 will undergo numerous tests to ensure structural integrity of the aircraft and that ¬its components work properly. First flight of the aircraft will be in 2022 and community testing will start in 2024, making way for a new market of quiet commercial supersonic aircraft.

image

Want to learn more about the X-59 and our mission? Visit nasa.gov/X59. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 

5 years ago

On Top of The World – Literally

What’s one perk about applying to #BeAnAstronaut? You’re one step closer to being on top of the world.

image

Part of the job of a NASA astronaut is a task called spacewalking. Spacewalking refers to any time an astronaut gets out of a vehicle while in space; it is performed for many reasons such as completing repairs outside the International Space Station, conducting science experiments and testing new equipment. 

image

Spacewalking can last anywhere from five to eight hours, and for that reason, astronauts’ spacesuits are more like mini-spacecraft than uniforms! Inside spacesuits, astronauts have the oxygen they need to breathe, water to drink and a bathroom! 

image

Spacesuits also protect astronauts from the extreme environment of space. In Earth orbit, conditions can be as cold as minus 250 degrees Fahrenheit. In the sunlight, they can be as hot as 250 degrees. A spacesuit protects astronauts from those extreme temperatures.

image

To stay safe during spacewalks, astronauts are tethered to the International Space Station. The tethers, like ropes, are hooked to the astronaut and the space station – ensuring the astronaut does not float away into space. 

image

Spacewalking can be a demanding task. Astronauts can burn anywhere from ~1500-2500 calories during one full assignment. That’s about equal to running 2/3 of a marathon. 

image

Does spacewalking sound like something you’d be interested in? If so, you might want to APPLY to #BeAnAstronaut! Applications are open until March 31. Don’t miss your chance to! 

image

Want to learn more about what it takes to be an astronaut? Or, maybe you just want more epic images. Either way, check out nasa.gov/astronauts for all your NASA astronaut needs!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

9 months ago
thehkr - 無標題
4 years ago

Every next level of your life will demand a different you.

Leonardo DiCaprio (via quotemadness)

5 years ago
thehkr - 無標題
4 years ago
thehkr - 無標題
5 years ago
thehkr - 無標題
thehkr - 無標題
無標題

122 posts

Explore Tumblr Blog
Search Through Tumblr Tags