Lanzamiento del telescopio "X-ray Polarimetry Explorer" (IXPE) en el Falcon 9 de SpaceX, cuyo objetivo es estudiar los rayos X liberados por los agujeros negros y estrellas de neutrones.
Crédito: Matt Cutshall
https://instagram.com/booster_buddies
https://twitter.com/Booster_Buddies
https://nexthorizonsspaceflight.com
~Antares
NGC 6888, también conocida como la Nebulosa Creciente, es una burbuja cósmica de unos 25 años luz de diámetro, arrastrada por los vientos de su estrella central, brillante y masiva. La estrella central de NGC 6888 está clasificada como una estrella Wolf-Rayet (WR 136). La estrella se desprende de su envoltura exterior con un fuerte viento estelar., expulsando el equivalente a la masa del Sol cada 10.000 años.
Créditos: Michael Miller , Jimmy Walker
Aurora Boreal
Crédito: Willy Laboulle Photographe Paysage Workshop Photos
www.WillyLaboulle.com
It’s no secret the Sun affects us here on Earth in countless ways, from causing sunburns to helping our houseplants thrive. The Sun affects other objects in space, too, like asteroids! It can keep them in place. It can move them. And it can even shape them.
Asteroids embody the story of our solar system’s beginning. Jupiter’s Trojan asteroids, which orbit the Sun on the same path as the gas giant, are no exception. The Trojans are thought to be left over from the objects that eventually formed our planets, and studying them might offer clues about how the solar system came to be.
Over the next 12 years, NASA’s Lucy mission will visit eight asteroids—including seven Trojans— to help answer big questions about planet formation and the origins of our solar system. It will take the spacecraft about 3.5 years to reach its first destination.
How does the Sun affect what Lucy might find?
Credits: Astronomical Institute of CAS/Petr Scheirich
The Sun makes up 99.8% of the solar system’s mass and exerts a strong gravitational force as a result. In the case of the Trojan asteroids that Lucy will visit, their very location in space is dictated in part by the Sun’s gravity. They are clustered at two Lagrange points. These are locations where the gravitational forces of two massive objects—in this case the Sun and Jupiter—are balanced in such a way that smaller objects (like asteroids or satellites) stay put relative to the larger bodies. The Trojans lead and follow Jupiter in its orbit by 60° at Lagrange points L4 and L5.
The Sun can move and spin asteroids with light! Like many objects in space, asteroids rotate. At any given moment, the Sun-facing side of an asteroid absorbs sunlight while the dark side sheds energy as heat. When the heat escapes, it creates an infinitesimal amount of thrust, pushing the asteroid ever so slightly and altering its rotational rate. The Trojans are farther from the Sun than other asteroids we’ve studied before, and it remains to be seen how sunlight affects their movement.
The Sun can break asteroids, too. Rocks expand as they warm and contract when they cool. This repeated fluctuation can cause them to crack. The phenomenon is more intense for objects without atmospheres, such as asteroids, where temperatures vary wildly. Therefore, even though the Trojans are farther from the Sun than rocks on Earth, they’ll likely show more signs of thermal fracturing.
Like everything in our solar system, asteroids are battered by the solar wind, a steady stream of particles, magnetic fields, and radiation that flows from the Sun. For the most part, Earth’s magnetic field protects us from this bombardment. Without magnetic fields or atmospheres of their own, asteroids receive the brunt of the solar wind. When incoming particles strike an asteroid, they can kick some material off into space, changing the fundamental chemistry of what’s left behind.
Follow along with Lucy’s journey with NASA Solar System on Instagram, Facebook, and Twitter, and be sure to tune in for the launch at 5 a.m. EDT (09:00 UTC) on Saturday, Oct. 16 at nasa.gov/live.
Make sure to follow us on Tumblr for your regular dose of space!
Behold our beautiful Moon as seen from lunar orbit during the Apollo 15 mission, August 2, 1971.
Nuestra estrella mas cercana a través de un árbol.
Crédito: Bryan Minear
https://instagram.com/bryanminear
~Antares
Nebulosa de Orión, El corredor, Cabeza de Caballo y Flama en la constelación de Orión.
Imagen capturada con el siguiente equipo:
Canon 80D, Lente Tamron 70-200 mm f/2.8 SP Di
Exp 60 seg. X 27 fotos luz más 20 Darks ISO 3200 f/2.8 a 200 mm.
Montura Sky Watcher Star Adventurer
6 Nov 2021
Crédito: Chavo Salvador Perez
https://www.facebook.com/chavo.salvadorp
Astrofotografía México
~Antares
Eclipse del 2 de julio de 2019
Crédito: Thierry Legault
twitter.com/thierrylegault
Panorámica del núcleo galáctico del mes de Agosto. Mosaico de 8 paneles.
Crédito: Jorge Restrepo
https://instagram.com/astrofotomexico
~Antares
Cabin crew, prepare for takeoff. Engines roar; speed increases. You sip a cold beverage as the aircraft accelerates quietly past Mach 1 or around 600 mph. There’s no indication you’re flying over land faster than the speed of sound except when you glance at your watch upon arrival and see you’ve reached your destination in half the time. You leisurely walk off the plane with ample time to explore, finish a final report or visit a familiar face. This reality is closer than you think.
We’re on a mission to help you get to where you want to go in half the time. Using our single-pilot X-59 Quiet SuperSonic Technology (QueSST) research aircraft, we will provide rule-makers the data needed to lift current bans on faster-than-sound air travel over land and help enable a new generation of commercial supersonic aircraft.
The X-59 QueSST is unique in shape. Each element of the aircraft’s design will help reduce a loud sonic boom, typically produced by conventional supersonic aircraft, to a gentle sonic thump, making it quieter for people on the ground. To prove the quiet technology works, we will fly the X-59 over select U.S. communities to gauge the public’s response to the sound.
We are working with Lockheed Martin in Palmdale, California, to manufacture the X-59 and are making significant progress, despite the pandemic.
We finished the majority of work on the wing and closed its interior, marking the halfway point on construction of the aircraft.
The X-59 team at Lockheed Martin completed the final touches by fastening skins to the wing. A special sealant is applied so that fuel can be carried in the wings of the aircraft.
Moving at a steady pace, technicians continue to work on many parts of the aircraft simultaneously. The forebody section of the aircraft will carry the pilot and all the avionics needed to fly the aircraft.
Because of the X-59’s long nose, the pilot will rely on an eXternal Vision System (XVS), rather than a window, for forward-facing visibility. The XVS will display fused images from an advanced computing system and cameras mounted on the upper and lower part of the aircraft’s nose.
The aft part of the aircraft will hold an F414 GE engine and other critical systems. Unlike typical aircraft, the engine inlet will be located on the upper surface of the X-59 and is one of many features that will help reduce the noise heard on the ground.
Over the next several months, the team will merge all three sections together. After final assembly in 2021, the X-59 will undergo numerous tests to ensure structural integrity of the aircraft and that ¬its components work properly. First flight of the aircraft will be in 2022 and community testing will start in 2024, making way for a new market of quiet commercial supersonic aircraft.
Want to learn more about the X-59 and our mission? Visit nasa.gov/X59.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Otra fotografía recordando al cometa NEOWISE desde Little Sable Point el cual es un faro ubicado en la peninsula inferior del estado de Michigan.
Crédito: Phil Sisto
https://instagram.com/p.sisto.images
~Antares
Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.
248 posts