¿Qué está pasando en la nebulosa de la Estatua de la Libertad?
Se están formando y liberando estrellas brillantes y moléculas interesantes. La compleja nebulosa reside en la región de formación estelar llamada RCW 57. Se cree que los PAH se crean en el gas de enfriamiento de las regiones de formación de estrellas, y su desarrollo en la nebulosa de formación del Sol hace cinco mil millones de años puede haber sido un paso importante en el desarrollo de la vida en la Tierra. La imagen presentada fue tomada en el Observatorio Interamericano Cerro Tololo en Chile.
Créditos: S. Mazlin , J. Harvey , R. Gilbert y D. Verschatse
-Betelgeuse
NGC 1316 es una enorme galaxia elíptica que de alguna manera incluye carriles de polvo oscuro generalmente encontrados en una galaxia espiral.
Más: https://t.co/pkvd1f25GF
Crédito: NASA, ESA, Hubble
Procesamiento: Daniel Nobre
Esta es la primera imagen del Rover Perseverance de la NASA en la superficie de Marte desde la cámara del Experimento de Imágenes de Alta Resolución (HiRISE) a bordo del Mars Reconnaissance Orbiter (MRO) de la NASA muestra las muchas partes del sistema de aterrizaje de la misión Marte 2020 que puso al rover a salvo en tierra. La imagen fue tomada el 19 de febrero de 2021.
Encontrar ruinas y obtener fotografías junto a las estrellas es algo fantástico. Villacreces, Castilla y León, España. Villacreces fue el primer despoblado del siglo XX en Tierra de Campos.
La estructura que podemos ver en el centro es la Torre mudéjar.
Crédito: Marcos Alonso
https://instagram.com/elpiratilla
~Antares
Eric Whitacre; Deep Field: The Impossible Magnitude of our Universe a unique film and musical experience inspired by one of the most important scientific discoveries of all time: the Hubble Telescope’s Deep Field image
See that tiny blob of light, circled in red? Doesn’t look like much, does it? But that blob represents a feast big enough to feed a black hole around 30 million times the mass of our Sun! Scientists call these kinds of stellar meals tidal disruption events, and they’re some of the most dramatic happenings in the cosmos.
Sometimes, an unlucky star strays too close to a black hole. The black hole’s gravity pulls on the star, causing it to stretch in one direction and squeeze in another. Then the star pulls apart into a stream of gas. This is a tidal disruption event. (If you’re worried about this happening to our Sun – don’t. The nearest black hole we know about is over 1,000 light-years away. And black holes aren’t wild space vacuums. They don’t go zipping around sucking up random stars and planets. So we’re pretty safe from tidal disruption events!)
The trailing part of the stream gets flung out of the system. The rest of the gas loops back around the black hole, forming a disk. The material circling in the disk slowly drifts inward toward the black hole’s event horizon, the point at which nothing – not even light – can escape. The black hole consumes the gas and dust in its disk over many years.
Sometimes the black hole only munches on a passing star – we call this a partial tidal disruption event. The star loses some of its gas, but its own gravity pulls it back into shape before it passes the black hole again. Eventually, the black hole will have nibbled away enough material that the star can’t reform and gets destroyed.
We study tidal disruptions, both the full feasts and the partial snacks, using many kinds of telescopes. Usually, these events are spotted by ground-based telescopes like the Zwicky Transient Facility and the All-Sky Automated Survey for Supernovae network.
They alert other ground- and space-based telescopes – like our Neil Gehrels Swift Observatory (illustrated above) and the European Space Agency’s XMM-Newton – to follow up and collect more data using different wavelengths, from visible light to X-rays. Even our planet-hunting Transiting Exoplanet Survey Satellite has observed a few of these destructive wonders!
We’re also studying disruptions using multimessenger astronomy, where scientists use the information carried by light, particles, and space-time ripples to learn more about cosmic objects and occurrences.
But tidal disruptions are super rare. They only happen once every 10,000 to 100,000 years in a galaxy the size of our own Milky Way. Astronomers have only observed a few dozen events so far. By comparison, supernovae – the explosive deaths of stars – happen every 100 years or so in a galaxy like ours.
That’s why scientists make their own tidal disruptions using supercomputers, like the ones shown in the video here. Supercomputers allow researchers to build realistic models of stars. They can also include all of the physical effects they’d experience whipping ‘round a black hole, even those from Einstein’s theory of general relativity. They can alter features like how close the stars get and how massive the black holes are to see how it affects what happens to the stars. These simulations will help astronomers build better pictures of the events they observe in the night sky.
Keep up with what’s happening in the universe and how we study it by following NASA Universe on Twitter and Facebook.
Make sure to follow us on Tumblr for your regular dose of space!
This is Herschel’s Garnet Star! 🌟🌟🌟
If Herschel’s Garnet Star and the Sun were placed both at a same distance of 10 parsecs, this star would be 100,000 times brighter than our Sun! It is so big that if it were in the Solar System, it would engulf up to the orbit of Jupiter! ✨✨✨
Taken by me (Michelle Park) using the Slooh Canary Two telescope on October 26th, 2020 at 23:47 UTC.
Un árbol de siluetas desde la Bahía Barnegat, Jersey Shore, NJ.
Crédito: John Entwistle
https://instagram.com/johnentwistle_photography
~Antares
Blue Origin completó con éxito la decimotercera misión New Shepard el 13 de octubre de 2020. New Shepard voló 12 cargas útiles comerciales al espacio en esta misión, incluida la Demostración del sensor de aterrizaje, descenso y deorbitación con la Dirección de Misión de Tecnología Espacial de la NASA.
Vía: Blue Origin
Conectado a tierra bajo las estrellas
El MV Alta quedó encallado en el oeste de Cork después de ser un barco fantasma por 18 meses.
Quedó alineado perfecto para el arco de la Vía Láctea. Esta es la tercera vez que el autor tiene suerte de poder fotografiarlo junto a la Vía Láctea.
📸 Keith
Ig: https://instagram.com/mc_snap_agram
📷 Cielo 2x8 filas ISO 6400 15seg 4 disparos en cada panel
Primer plano 14 mm ISO 3200 x 10 30 segundos y apilado
~Félicette
Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.
248 posts