Gemínida en Colorado, Estados Unidos.
Crédito: Lars Leber
www.larsleber.com
Esta es la primera imagen del Rover Perseverance de la NASA en la superficie de Marte desde la cámara del Experimento de Imágenes de Alta Resolución (HiRISE) a bordo del Mars Reconnaissance Orbiter (MRO) de la NASA muestra las muchas partes del sistema de aterrizaje de la misión Marte 2020 que puso al rover a salvo en tierra. La imagen fue tomada el 19 de febrero de 2021.
Eclipse lunar total en el 2019
Compuesto reprocesado de dos imagenes, una de la luna y otra de las estrellas.
Crédito: Dan Stein
https://danieljstein.com/
~Antares
Are we alone in the universe? So far, the only life we know of is right here on Earth. But here at NASA, we’re looking.
We’re exploring the solar system and beyond to help us answer fundamental questions about life beyond our home planet. From studying the habitability of Mars, probing promising “oceans worlds,” such as Titan and Europa, to identifying Earth-size planets around distant stars, our science missions are working together with a goal to find unmistakable signs of life beyond Earth (a field of science called astrobiology).
Dive into the past, present, and future of our search for life in the universe.
Mission Name: The Viking Project
Launch: Viking 1 on August 20, 1975 & Viking 2 on September 9, 1975
Status: Past
Role in the search for life: The Viking Project was our first attempt to search for life on another planet. The mission’s biology experiments revealed unexpected chemical activity in the Martian soil, but provided no clear evidence for the presence of living microorganisms near the landing sites.
Mission Name: Galileo
Launch: October 18, 1989
Status: Past
Role in the search for life: Galileo orbited Jupiter for almost eight years, and made close passes by all its major moons. The spacecraft returned data that continues to shape astrobiology science –– particularly the discovery that Jupiter’s icy moon Europa has evidence of a subsurface ocean with more water than the total amount of liquid water found on Earth.
Mission Name: Kepler and K2
Launch: March 7, 2009
Status: Past
Role in the search for life: Our first planet-hunting mission, the Kepler Space Telescope, paved the way for our search for life in the solar system and beyond. Kepler left a legacy of more than 2,600 exoplanet discoveries, many of which could be promising places for life.
Mission Name: Perseverance Mars Rover
Launch: July 30, 2020
Status: Present
Role in the search for life: Our newest robot astrobiologist is kicking off a new era of exploration on the Red Planet. The rover will search for signs of ancient microbial life, advancing the agency’s quest to explore the past habitability of Mars.
Mission Name: James Webb Space Telescope
Launch: 2021
Status: Future
Role in the search for life: Webb will be the premier space-based observatory of the next decade. Webb observations will be used to study every phase in the history of the universe, including planets and moons in our solar system, and the formation of distant solar systems potentially capable of supporting life on Earth-like exoplanets.
Mission Name: Europa Clipper
Launch: Targeting 2024
Status: Future
Role in the search for life: Europa Clipper will investigate whether Jupiter’s icy moon Europa, with its subsurface ocean, has the capability to support life. Understanding Europa’s habitability will help scientists better understand how life developed on Earth and the potential for finding life beyond our planet.
Mission Name: Dragonfly
Launch: 2027
Status: Future
Role in the search for life: Dragonfly will deliver a rotorcraft to visit Saturn’s largest and richly organic moon, Titan. This revolutionary mission will explore diverse locations to look for prebiotic chemical processes common on both Titan and Earth.
For more on NASA’s search for life, follow NASA Astrobiology on Twitter, on Facebook, or on the web.
Make sure to follow us on Tumblr for your regular dose of space!
As our planet warms, sea levels are rising around the world – and are doing so at an accelerating rate. Currently, global sea level is rising about an eighth of an inch every year.
That may seem insignificant, but it’s 30% more than when NASA launched its first satellite mission to measure ocean heights in 1992 – less than 30 years ago. And people already feel the impacts, as seemingly small increments of sea level rise become big problems along coastlines worldwide.
Higher global temperatures cause our seas to rise, but how? And why are seas rising at a faster and faster rate? There are two main reasons: melting ice and warming waters.
The Ice We See Is Getting Pretty Thin
About two-thirds of global sea level rise comes from melting glaciers and ice sheets, the vast expanses of ice that cover Antarctica and Greenland. In Greenland, most of that ice melt is caused by warmer air temperatures that melt the upper surface of ice sheets, and when giant chunks of ice crack off of the ends of glaciers, adding to the ocean.
In Antarctica – where temperatures stay low year-round – most of the ice loss happens at the edges of glaciers. Warmer ocean water and warmer air meet at the glaciers’ edges, eating away at the floating ice sheets there.
NASA can measure these changes from space. With data from the Ice, Cloud and land Elevation Satellite-2, or ICESat-2, scientists can measure the height of ice sheets to within a fraction of an inch. Since 2006, an average of 318 gigatons of ice per year has melted from Greenland and Antarctica’s ice sheets. To get a sense of how big that is: just one gigaton is enough to cover New York City’s Central Park in ice 1,000 feet deep – almost as tall as the Chrysler Building.
With the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission – a partnership with the German Research Centre for Geosciences – scientists can calculate the mass of ice lost from these vast expanses across Greenland and Antarctica.
It’s not just glaciers in Antarctica and Greenland that are melting, though. Nearly all glaciers have been melting in the last decade, including those in Alaska, High Mountain Asia, South America, and the Canadian Arctic. Because these smaller glaciers are melting quickly, they contribute about the same amount to sea level rise as meltwater from massive ice sheets.
The Water’s Getting Warm
As seawater warms, it takes up more space. When water molecules get warmer, the atoms in those molecules vibrate faster, expanding the volume they take up. This phenomenon is called thermal expansion. It’s an incredibly tiny change in the size of a single water molecule, but added across all the water molecules in all of Earth’s oceans – a single drop contains well over a billion billion molecules – it accounts for about a third of global sea level rise.
So Much to See
While sea level is rising globally, it’s not the same across the planet. Sea levels are rising about an eighth of an inch per year on average worldwide. But some areas may see triple that rate, some may not observe any changes, and some may even experience a drop in sea level. These differences are due to ocean currents, mixing, upwelling of cold water from the deep ocean, winds, movements of heat and freshwater, and Earth’s gravitational pull moving water around. When ice melts from Greenland, for example, the drop in mass decreases the gravitational pull from the ice sheet, causing water to slosh to the shores of South America.
That’s where our view from space comes in. We’re launching Sentinel-6 Michael Freilich, an international partnership satellite, to continue our decades-long record of global sea level rise.
Eclipse Total Solar desde Santa Fe, Argentina
Credito: Eduardo Schaberger Poupeau
www.ruralskies.ar
Cometa C/2021 A1 (Leonard).
Descubierto el día 3 de enero de 2021 por el astrónomo Gregory J. Leonard a través de imágenes obtenidas mediante el telescopio reflector de 1.5 m del Sistema de Vigilancia Mt. Lemmon en Arizona (EEUU).
El mayor acercamiento que tendrá este objeto a la Tierra será el 12 de Diciembre del 2021 a una distancia de 35 millones de kilómetros aproximadamente.
Las estimaciones de los astrónomos indican que Leonard debería alcanzar una magnitud visual entre cinco y 2.6, lo que permitiría distinguirlo a simple vista, pues mientras más bajo es el índice, más brillante es un cuerpo celeste.
Así que ya lo saben, es posible que el 2021 nos de un excelente espectáculo estelar. Estén atentos a las noticias por medios confiables sobre su estado.
Fuente: Cometografía
https://cometografia.es/cometa-leonard-2021
Fotografía: Da Ko
https://instagram.com/dakouniverse
~Antares
La galaxia de andromeda o también conocida como M31, una galaxia que en unos millones de años colisionaran con nuestra galaxia y ambas se fusionaran formando una nueva.
Te invitamos a que sigas el perfil del autor de esta fotografías para que veas con que equipo la tomo y que hizo para revelarla.
Crédito: Alan Dyer
https://instagram.com/amazingskyguy
https://www.amazingsky.com/
~Antares
Antares / M4 en Escorpio.
Poco fuera de foco, disparado con una lente 360 mm f / 6 con un viejo Canon Rebel 400 D, pero todavía muestra la enorme nube de polvo cerca de Antares.
Crédito: Robert Reeves
Glaretum fundado en el 2015 con el objetivo de divulgar la ciencia a través de la Astronomía hasta convertirnos en una fuente de conocimiento científico veraz siendo garantía de información seria y actualizada.
248 posts