A collaboration between Monash University and Haemokinesis Pty Ltd has resulted in a momentous breakthrough in world health. The creation of a novel category of low cost paper diagnostics that can identify a person’s blood group in just one minute the innovation is named Group Legible Immunohematology Format (GLIF).
GLIF enables quick and easy blood typing, without the need for laboratory equipment, expertise or interpretation of results. Within one minute a written result is returned to the user. This concept can be used anywhere, by anyone, the applications are endless; third world countries, multi-trauma events, countries with heavy conflict to name but a few.
This Australian made and licenced technology was created following a long standing partnership between Monash University and Haemokinesis with funding provided by the Australian Research Council (ARC) under the criteria of a Linkage project.
We won’t have a solar eclipse until Aug. 21, 2017, but observers in central Africa will see an annular eclipse, where the moon covers most but not all of the sun, on Sept. 1. Observers always need to use safe solar eclipse glasses or filters on telescopes, binoculars and cameras.
Also this month, there are two minor meteor showers, both with about 5 swift and bright meteors per hour at their peak, which will be near dawn. The first is the Aurigid shower on Sept. 1. The new moon on the first means the sky will be nice and dark for the Aurigids.
The second shower is the Epsilon Perseids on Sept. 9. The first quarter moon sets on the 9th at midnight, just in time for the best viewing of the Perseids.
There are many nice pair-ups between the moon and planets this month. You can see the moon between Venus and Jupiter on Sept. 2, and above Venus on the 3rd, right after sunset low on the West-Southwest horizon. On the 15th the nearly full moon pairs up with Neptune, two weeks after its opposition, when the 8th planet is closest to Earth in its orbit around the sun.
Watch the full September “What’s Up” video for more:
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.
Paris-based International Energy Agency (IEA) has predicted that by 2020, 26% of the world’s energy will come from renewable sources (solar, wind, hydro). The agency adds that the amount will be higher than the combined energy demands of country’s like China, India, and Brazil. The prediction was based on the assumption that in the next five years, 700 gigawatts will be added to the world’s current renewable energy capacity.
Read more at: http://futurism.com/links/by-2020-there-will-be-enough-renewable-energy-to-supply-chn-ind-and-bra-combined/
The New York City Department of Consumer Affairs compared nearly 800 products with female and male versions — meaning they were practically identical except for the gender-specific packaging — and uncovered a persistent surcharge for one of the sexes. Controlling for quality, items marketed to girls and women cost an average 7 percent more than similar products aimed at boys and men.
Reviving Chivalry: Small Favors Can Yield Large Returns
Many people hold the door open for strangers. But what do people give in return?
The research is in Frontiers In Psychology. (full open access)
Fusion power would completely revolutionize energy production on our planet. Indeed, it would reshape our entire world, allowing us to produce vast amounts of energy with little waste or cost. In essence, fusion reactors work by mimicking our Sun in that they fuse two hydrogen atoms into a single helium atom. Conversely, nuclear fission breaks a single atom into two atoms.
Ultimately, the fusion reaction releases ten times more energy per mass as our regular fission reactors, and it does so without all the harmful nuclear waste.
Unfortunately, such reactions come with a few problems. As University of Texas physicist Dr. Swadesh M. Mahajan notes, “Getting net energy from fusion is such a goddamn difficult undertaking. We know of no materials that would be able to handle anywhere near that amount of heat.”
Find out how scientists tackled that issue at: http://futurism.com/links/fusion-energy-these-promising-projects-are-set-to-revolutionize-our-world/
A man in Sweden accidentally captured this image of a green meteorite while taking pictures of the Northern lights.
Life-saving surgery and treatments rely on doctors being able to accurately track the spread of cancers.
A new device that uses iron particles and a magnetic probe will allow clinicians to narrow down exactly which lymph nodes tumours spread to.
Developed by Aidan Cousins with colleagues at the University of South Australia, the novel approach is more sensitive and safer than existing methods for monitoring cancer.
“Pre-clinical trials of our approach suggest it gives a very clear picture of where tumours are most likely to spread,” Aidan explained.
“It will allow subsequent surgery and treatment options to be refined for better standards of care and improved prognosis.”
The technique involves injecting biodegradable iron particles at the primary site of a tumour, from where – as part of their normal surveillance activities – cells of the immune system transport them to the draining lymph nodes.
More information: A. Cousins et al. Novel Handheld Magnetometer Probe Based on Magnetic Tunnelling Junction Sensors for Intraoperative Sentinel Lymph Node Identification, Scientific Reports (2015). DOI: 10.1038/srep10842
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute
New experiments are scheduled to arrive to the International Space Station with the launch of Orbital ATK’s Cygnus cargo spacecraft on Tuesday. These science payloads will study fires, meteors, regolith, adhesion and 3-D printing in microgravity.
What is it? What happens when you set a fire in space? The Spacecraft Fire Experiment-I (Saffire-I) will find out!
How does it work? This experiment will intentionally light a large-scale fire inside an empty Cygnus resupply vehicle after it leaves the space station and before it re-enters Earth’s atmosphere.
Why is it important? The Saffire-I investigation provides a new way to study a realistic fire on an exploration vehicle, which has not been possible in the past because the risks for performing studies on manned spacecraft are too high. Instruments on the returning Cygnus will measure flame growth, oxygen use and more.
What is it? A less heated investigation, Meteor Composition Determination (Meteor) will enable the first space-based observations of meteors entering Earth’s atmosphere from space. Meteors are somewhat rare and are difficult to monitor from the ground because of Earth’s atmosphere.
How does it work? This investigation uses high-resolution video and image analysis of the atmosphere to acquire the physical and chemical properties of the meteoroid dust, such as size, density and chemical composition.
Why is it important? Studying the elemental composition of meteors adds to our understanding of how the planets developed, and continuous measurement of meteor interactions with Earth’s atmosphere could spot previously unforeseen meteors.
What is it? A more “grounded” investigation will study the properties and behavior of regolith, the impact-shatterd “soil” found on asteroids, comets, the moon and other airless worlds.
How does it work? The Strata-1 experimental facility exposes a series of regolith simulants, including pulverized meteorite material, glass beads, and regolith simulants composed of terrestrial materials and stored in multiple transparent tubes, to prolonged microgravity on the space station. Scientists will monitor changes in regolith layers and layering, size sorting and particle migration via video images and close examination after return of the samples to Earth.
Why is it important? The Strata-1 investigation could give us new answers about how regolith behaves and moves in microgravity, how easy or difficult it is to anchor a spacecraft in regolith, how it interacts with spacecraft and spacesuit materials and other important properties.
What is it? From grounded to gripping, another investigation launching takes inspiration from small lizards. Geckos have specialized hairs on their feed called setae that let them stick to vertical surfaces without falling, and their stickiness doesn’t wear off after repeated use. The Gecko Gripper investigation tests a gecko-adhesive gripping device that can stick on command in the harsh environment of space.
How does it work? The gripping device is a material with synthetic hairs much like setae that are much thinner than a human hair. When a force is applied to make the tiny hairs bend, the positively charged part of a molecule within a slight electrical field attracts the negatively charged part of its neighbor resulting in “stickiness.” Once adhered, the gripper can bear loads up to 20 pounds. The gripper can remain in place indefinitely and can also be easily removed and reused.
Why is it important? Gecko Grippers have many applications on current and future space missions, including acting as mounting devices for payloads, instruction manuals and many other small items within the space station. In addition, this technology enables a new type of robotic inspection system that could prove vital for spacecraft safety and repair.
What is it? From adhesion to additive, the new Additive Manufacturing Facility (AMF) will also launch on the flight. Additive manufacturing (3D printing) is the process of building a part layer-by-layer, with an efficient use of the material.
How does it work? The AMF uses this technology to enable the production of components on the space station for both NASA and commercial objectives.
Why is it important? Parts, entire experiments and tools can be created on demand with this technology. The ability to manufacture on the orbiting laboratory enables on-demand repair and production capability, as well as essential research for manufacturing on long-term missions.
These sticky, stony and sizzling investigations are just a sampling of the wide range of science conducted on the orbiting laboratory that benefits future spaceflight and provides Earth-based benefits as well.
You can watch the launch of Orbital ATK’s Cygnus spacecraft online. Stream live coverage starting at 10 p.m. EDT on March 22. Launch is scheduled for 11:05 p.m., which is the start of a 30-minute launch window.
Watch online: nasa.gov/nasatv
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com