Death, when it came, was sudden and cruel. The individual, either a crew member or passenger, was trapped on board when the huge ship foundered. Dashed on the rocks, the vessel slid beneath the waves, tumbled down an undersea cliff, and swiftly became buried in sediment on the seabed.
Now, more than 2,000 years later, archaeologists have recovered the bones of the individual they now call Pamphilos. Thought to be a man in his late teens to early 20s, he was on the ship sailing from Asia Minor to Rome when disaster struck off the tiny Greek island of Antikythera between Crete and the Peloponnese.
Individual bacterial cells have short memories. But groups of bacteria can develop a collective memory that can increase their tolerance to stress. This has been demonstrated experimentally for the first time in a study by Eawag and ETH Zurich scientists published in PNAS.
Roland Mathis, Martin Ackermann. Response of single bacterial cells to stress gives rise to complex history dependence at the population level. PNAS, March 7, 2016 DOI: 10.1073/pnas.1511509113
Experimental set-up with the bacterium Caulobacter crescentus in microfluidic chips: each chip comprises eight channels, with a bacterial population growing in each channel. The bacteria are attached to the glass surface by an adhesive stalk. When the bacterial cells divide, one of the two daughter cells remains in the channel, while the other is washed out. Using time-lapse microscopy, bacterial cell-division cycles and survival probabilities can thus be reconstructed. Credit: Stephanie Stutz
For International Women’s Day, here are 12 women from chemistry history: wp.me/p4aPLT-2ra and 12 from chemistry present: wp.me/p4aPLT-5w7
1. Broad Institute wins CRISPR patent battle
basically UC Berkely has rights to use CRISPR in “all kinds of cells” and Broad has rights in “eukaryotic cells” (yay legal system). Anticipate more legal battles since there are more types of CRISPR techniques
2. Human genome editing gets the OK to prevent “serious heritable diseases and conditions only”
Bioshock likely to happen in 50 years as “serious disease” dwindles in to “mediocre disease” and finally “what the hell let’s shoot fire from our hands”
3. With the EPA at risk of being destroyed, what was life like before the EPA?
4. Congress wants to shift Earth Science away from NASA (and focus on deep space)
4.1 Coders continue to save climate data
5. This years winners of underwater photos
6. Got trash on your power lines? That’s alright just attach a flamethrower to a drone, no worries
7. Fungicides bring us closer to figuring out why all of the bees are dying
7.1 (but who cares right? we can just make quadcopters do all the work)
8. Australia is HOT AS BALLS
9. Aztecs probably died off from salmonella outbreak
10. Our genetic past and present sanitary world lead to increased autoimmunity and allergy
10.1 Getting the right microbiome early on is so important for health
11. New Zealand on a new continent might make maps include it more often
12. Now you realize how slow the speed of light is on a cosmic scale
13. Meta-Analysis shows Vitamin D supplementation provides “modest protective effect” from respiratory infections like the flu or cold
14. Watch Yosemite’s Horsetail and its annual “FireFall” (image via Robert Minor)
15. Trump’s press conference makes people wonder if he is mentally ill and if we should start testing old ass presidents for dementia
16. He continue’s to spew more anti-vaccine bullshit, showing his ignorance of science and RFK Jr.’s scam needs “just one study” to change his mind
16.1 more than 350 organizations write to Trump to assure his feeble mind that vaccines are safe
17. Simple fractal patterns are key to Rorschach test
18. Imagine shining a light somewhere on your body and microscopic bots deliver drugs there
19. How flat can a planet be?
20. Triangulene created for the first time
Who needs carefully planned chemical reactions when you can just blast hydrogens off with electricity?
21. All of the nerdy. Valentine’s. you. will. ever. need.
22. Help find Planet 9 in your spare time
22.1 Don’t have time? then do science while your computer is idle!
Dive deep into Episode 05 of #ShelfLife to discover the various technologies that have helped humans map the sky around us for eons.
From sundials to mega-powered modern telescopes, tools for stargazing allow us to understand the universe—and our place within it. Season 2 begins on November 1.
French researchers think they’ve found a giant virus big enough to house its own virus-killing devices using a system like CRISPR, and it could be a completely new form of life.
Called a mimivirus, it was first found growing in amoebae in a water tower. At four times the size of a typical virus, you can even see it under a light microscope
When the mimivirus encounters another virus, it stores some of the invader’s genetic material. That way, when it encounters the same kind of virus again, the MIMIVIRE system goes into gene-editing berserker mode, finding the key genes of the virus and cutting them to inert oblivion. This could have major applications.
Follow @the-future-now
Steve Gentleman, a neuropathologist, demonstrates the process of brain dissection and preservation for research.
Rosalind Franklin was born #OTD in 1920. Her work was instrumental in the discovery of the structure of DNA: http://wp.me/s4aPLT-franklin
Watching a snowflake grow seems almost magical–the six-sided shape, the symmetry, the way every arm of it grows simultaneously. But it’s science that guides the snowflake, not magic. Snowflakes are ice crystals; their six-sided shape comes from how water molecules fit together. The elaborate structures and branches in a snowflake are the result of the exact temperature and humidity conditions when that part of the snowflake formed. The crystals look symmetric and seem to grow identical arms simultaneously because the temperature and humidity conditions are the same around the tiny forming crystals. And the old adage that no two snowflakes are alike doesn’t hold either. If you can control the conditions well enough, you can grow identical-twin snowflakes! (Video credit: K. Libbrecht)
As the element that makes up 75 percent of all the mass in the Universe, and more than 90 percent of all the atoms, we’re all pretty well acquainted with hydrogen.
But the simplest and most abundant element in the Universe still has some tricks up its sleeve, because physicists have just created a never-before-seen form of hydrogen - negatively charged hydrogen clusters.
To understand what negatively charged hydrogen clusters are, you first have to wrap your head around their far more common counterparts - positively charged hydrogen clusters.
Positively charged hydrogen clusters are pretty much exactly what they sound like - positively charged clusters of a few or many hydrogen molecules.
Known simply as hydrogen ion clusters, they form at very low temperatures, and can contain as many as 100 individual atoms.
Physicists confirmed the existence of hydrogen ion clusters some 40 years ago, and while a negative counterpart to these clusters boasting large numbers of atoms were theorised, no one could figure out how to create one.
But that didn’t stop a team of physicists led by Michael Renzler from the University of Innsbruck in Austria from giving it a shot.
Continue Reading.
The more light your eyes can take in, the better the picture you see, and the lens at the front of your eye is transparent to help this. Most body cells contain lots of membranes – they have important roles like manufacturing cellular components, but they scatter light and aren’t transparent. Cells in the lens become transparent by losing all but their most vital internal membranes as they develop and move towards the middle of the lens: the central cells (shown here in a chick’s eye) are flatter, with rounder nuclei (blue). It wasn’t known how the membranes were lost until recently, when scientists discovered a structure called the excisosome. This forms inside cells and breaks down the membranes, possibly by stripping them apart into the proteins and lipids they’re made of. Current research implies that excisosomes form in the lenses of all animals, helping us understand how our eyes develop.
Written by Esther Redhouse White
Image from work by M.Joseph Costello and colleagues
Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
Image originally published under a Creative Commons Licence (BY 4.0)
Published in PLOS One, August 2016
You can also follow BPoD on Twitter and Facebook
A pharmacist and a little science sideblog. "Knowledge belongs to humanity, and is the torch which illuminates the world." - Louis Pasteur
215 posts